Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 13(46): 8745-8755, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29119185

ABSTRACT

Molecular conformations of individual polymers during flow through porous media are directly observed by single-DNA imaging in microfluidics. As the Weissenberg number increases during flow (Wi > 1), we observe two types of elastic instabilities: (a) stationary dead-zone and (b) time-dependant dead-zone washing. When stretched polymer chains enter a dead-zone, they first re-coil and, once inside the dead-zone, they rotate and re-stretch again. The probability distribution of DNA chains under the stretched condition inside the dead-zone is found to be heterogeneous with a broad distribution.

2.
Soft Matter ; 13(4): 765-775, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28054067

ABSTRACT

We experimentally investigate the flow of hydrolyzed polyacrylamide (HPAM) solution with and without salt in model porous media at high Weissenberg numbers (Wi > 1.0). The effect of pore shapes on the flow pattern and pressure drop is explored by using periodic arrays of circular and square pillars in aligned and staggered layouts. In the apparent shear-thinning regime, we observe stationary dead zones upstream of the pillars. In addition, we confirm that the size of stationary dead zones correlates with the level of shear-thinning, by varying the amount of salt in HPAM solution. At higher shear rates (or Wi), these dead zones are periodically washed away. We present the mechanism of this elastic instability and characterize it based on the pressure drop fluctuation spectral density.

3.
Langmuir ; 32(25): 6239-45, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27244300

ABSTRACT

We present the results of an experimental investigation of the effect of gas type and composition on foam transport in porous media. Steady-state foam strengths with respect to three cases of distinct gases and two cases containing binary mixtures of these gases were compared. The effects of gas solubility, the stability of lamellae, and the gas diffusion rate across the lamellae were examined. Our experimental results showed that the steady-state foam strength is inversely correlated with the gas permeability across a liquid lamella, a parameter that characterizes the rate of mass transport. The results are also in good agreement with existing observations that the foam strength for a mixture of gases is correlated with the less soluble component. Three hypotheses with different predictions of the underlying mechanism that explain the role of gas type and composition in foam strength are discussed in detail.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 2): 036304, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16605648

ABSTRACT

Understanding the role of pore-level mechanisms is essential to the mechanistic modeling and simulation of foam processes in porous media. Three different pore-level events can lead to foam formation: snapoff, leave behind, and lamella division. The initial state of the porous medium (fully saturated with liquid or already partially drained), as surfactant is introduced, also affects the different foam-generation mechanisms. Bubbles created by any of these mechanisms cause the formation of new bubbles by snapoff and leave behind as gas drains liquid-saturated pores. Lamellae are stranded unless the pressure gradient is sufficient to mobilize those that have been created. To appreciate the roles of these mechanisms, their interaction at the pore-network level was studied. We report an extensive pore-network study that incorporates the above pore-level mechanisms, as foam is created by drainage or by the continuous injection of gas and liquid in porous media. Pore networks with up to 10 000 pores are considered. The study explores the roles of the pore-level events, and by implication, the appropriate form of the foam-generation function for mechanistic foam simulation. Results are compared with previous studies. In particular, the network simulations reconcile an apparent contradiction in the foam-generation model of Rossen and Gauglitz [AIChE J. 36, 1176 (1990)], and identify how foam is created near the inlet of the porous medium when lamella division controls foam generation. In the process, we also identify a new mechanism of snap-off and foam generation near the inlet of the medium.

SELECTION OF CITATIONS
SEARCH DETAIL
...