Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 78(3): 307-13, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21296149

ABSTRACT

In [(18)F]fluoride chemistry, the minute amounts of radioactivity taking part in a radiolabeling reaction are easily outnumbered by other reactants. Surface areas become comparably larger and more influential than in standard fluorine chemistry, while leachables, extractables, and other components that normally are considered small impurities can have a considerable influence on the efficiency of the reaction. A number of techniques exist to give sufficient (18)F-tracer for a study in a pre-clinical or clinical system, but the chemical and pharmaceutical understanding has significant gaps when it comes to scaling up or making the reaction more efficient. Automation and standardization of [(18)F]fluoride PET tracers is a prerequisite for reproducible manufacturing across multiple PET centers. So far, large-scale, multi-site manufacture has been established only for [(18)F]FDG, but several new tracers are emerging. In general terms, this transition from small- to large-scale production has disclosed several scientific challenges that need to be addressed. There are still areas of limited knowledge in the fundamental [(18)F]fluoride chemistry. The role of pharmaceutical factors that could influence the (18)F-radiosynthesis and the gaps in precise chemistry knowledge are discussed in this review based on a normal synthesis pattern.


Subject(s)
Drug Compounding/methods , Fluorodeoxyglucose F18/chemistry , Manufactured Materials/standards , Positron-Emission Tomography/methods , Animals , Drug Compounding/standards , Drug Stability , Fluorine Radioisotopes/standards , Fluorodeoxyglucose F18/standards , Humans , Isotope Labeling , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...