Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
BMC Cancer ; 24(1): 814, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977944

ABSTRACT

BACKGROUND: Despite a multimodal approach including surgery, chemo- and radiotherapy, the 5-year event-free survival rate for rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in childhood, remains very poor for metastatic patients, mainly due to the selection and proliferation of tumour cells driving resistance mechanisms. Personalised medicine-based protocols using new drugs or targeted therapies in combination with conventional treatments have the potential to enhance the therapeutic effects, while minimizing damage to healthy tissues in a wide range of human malignancies, with several clinical trials being started. In this study, we analysed, for the first time, the antitumour activity of SFX-01, a complex of synthetic d, l-sulforaphane stabilised in alpha-cyclodextrin (Evgen Pharma plc, UK), used as single agent and in combination with irradiation, in four preclinical models of alveolar and embryonal RMS. Indeed, SFX-01 has shown promise in preclinical studies for its ability to modulate cellular pathways involved in inflammation and oxidative stress that are essential to be controlled in cancer treatment. METHODS: RH30, RH4 (alveolar RMS), RD and JR1 (embryonal RMS) cell lines as well as mouse xenograft models of RMS were used to evaluate the biological and molecular effects induced by SFX-01 treatment. Flow cytometry and the modulation of key markers analysed by q-PCR and Western blot were used to assess cell proliferation, apoptosis, autophagy and production of intracellular reactive oxygen species (ROS) in RMS cells exposed to SFX-01. The ability to migrate and invade was also investigated with specific assays. The possible synergistic effects between SFX-01 and ionising radiation (IR) was studied in both the in vitro and in vivo studies. Student's t-test or two-way ANOVA were used to test the statistical significance of two or more comparisons, respectively. RESULTS: SFX-01 treatment exhibited cytostatic and cytotoxic effects, mediated by G2 cell cycle arrest, apoptosis induction and suppression of autophagy. Moreover, SFX-01 was able to inhibit the formation and the proliferation of 3D tumorspheres as monotherapy and in combination with IR. Finally, SFX-01, when orally administered as single agent, displayed a pattern of efficacy at reducing the growth of tumour masses in RMS xenograft mouse models; when combined with a radiotherapy regime, it was observed to act synergistically, resulting in a more positive outcome than would be expected by adding each exposure alone. CONCLUSIONS: In summary, our results provide evidence for the antitumour properties of SFX-01 in preclinical models of RMS tumours, both as a standalone treatment and in combination with irradiation. These forthcoming findings are crucial for deeper investigations of SFX-01 molecular mechanisms against RMS and for setting up clinical trials in RMS patients in order to use the SFX-01/IR co-treatment as a promising therapeutic approach, particularly in the clinical management of aggressive RMS disease.


Subject(s)
Apoptosis , Cell Proliferation , Rhabdomyosarcoma , Xenograft Model Antitumor Assays , Animals , Humans , Mice , Cell Line, Tumor , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Rhabdomyosarcoma/radiotherapy , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/pathology , Radiation, Ionizing , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Autophagy/drug effects , Autophagy/radiation effects , Combined Modality Therapy
2.
Pharmaceutics ; 16(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38794272

ABSTRACT

Deer antlers are the fastest growing tissue. Because they are based on proto-oncogenes, to avoid the risk of cancer, antlers evolved strong anticancer mechanisms, and thus their extract (DVA) is effective also against the few human tumours studied so far. We assessed whether DVA is a general anticancer compound by testing the direct effects in cells of different tumours: glioblastoma (GBM; lines U87MG and U251), colorectal (CRC; lines DLD-1, HT-29, SW480, and SW620), breast cancer (BRCA; lines MCF7, SKBR3, and PA00), and leukaemia (THP-1). DVA reduced the viability of tumours but not healthy cells (NHC; lines 293T and HaCaT). Mobility decreased at least for the longest test (72 h). Intraperitoneal/oral 200 mg DVA/kg administration in GBM xenograft mice for 28 d reduced tumour weight by 66.3% and 61.4% respectively, and it also reduced spleen weight (43.8%). In addition, tumours treated with DVA showed symptoms of liquefactive necrosis. Serum cytokines showed DVA up-regulated factors related to tumour fighting and down-regulated those related to inducing immune tolerance to the tumour. DVA shows general anticancer effects in the lines tested and, in GBM mice, also strong indirect effects apparently mediated by the immune system. DVA may contain a future anticancer medicine without secondary effects.

3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37895923

ABSTRACT

The Eph kinases are the largest receptor tyrosine kinases (RTKs) family in humans. PC3 human prostate adenocarcinoma cells are a well-established model for studying Eph-ephrin pharmacology as they naturally express a high level of EphA2, a promising target for new cancer therapies. A pharmacological approach with agonists did not show significant efficacy on tumor growth in prostate orthotopic murine models, but reduced distal metastasis formation. In order to improve the comprehension of the pharmacological targeting of Eph receptors in prostate cancer, in the present work, we investigated the efficacy of Eph antagonism both in vitro and in vivo, using UniPR1331, a small orally bioavailable Eph-ephrin interaction inhibitor. UniPR1331 was able to inhibit PC3 cells' growth in vitro in a dose-dependent manner, affecting the cell cycle and inducing apoptosis. Moreover, UniPR1331 promoted the PC3 epithelial phenotype, downregulating epithelial mesenchymal transition (EMT) markers. As a consequence, UniPR1331 reduced in vitro PC3 migration, invasion, and vasculomimicry capabilities. The antitumor activity of UniPR1331 was confirmed in vivo when administered alone or in combination with cytotoxic drugs in PC3-xenograft mice. Our results demonstrated that Eph antagonism is a promising strategy for inhibiting prostate cancer growth, especially in combination with cytotoxic drugs.

4.
Front Pharmacol ; 13: 1071176, 2022.
Article in English | MEDLINE | ID: mdl-36532747

ABSTRACT

Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non-Homologous End-Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS.

5.
Front Oncol ; 12: 943064, 2022.
Article in English | MEDLINE | ID: mdl-36408162

ABSTRACT

Background: Glioblastoma multiforme (GBM) is the most malignant adult brain tumor. Current standard of care treatments have very limited efficacy, being the patients´ overall survival 14 months and the 2-year survival rate less than 10%. Therefore, the treatment of GBM is an urgent unmet clinical need. Methods: The aim of this study was to investigate in vitro and in vivo the potential of ABTL0812, an oral anticancer compound currently in phase II clinical stage, as a novel therapy for GBM. Results: We showed that ABTL0812 inhibits cell proliferation in a wide panel of GBM cell lines and patient-derived glioblastoma stem cells (GSCs) with half maximal inhibitory concentrations (IC50s) ranging from 15.2 µM to 46.9 µM. Additionally, ABTL0812 decreased GSCs neurosphere formation. GBM cells aggressiveness is associated with a trans-differentiation process towards a less differentiated phenotype known as proneural to mesenchymal transition (PMT). ABTL0812 was shown to revert PMT and induce cell differentiation to a less malignant phenotype in GBM cell lines and GSCs, and consequently reduced cell invasion. As previously shown in other cancer types, we demonstrated that the molecular mechanism of action of ABTL0812 in glioblastoma involves the inhibition of Akt/mTORC1 axis by overexpression of TRIB3, and the activation of endoplasmic reticulum (ER) stress/unfolded protein response (UPR). Both actions converge to induce autophagy-mediated cell death. ABTL0812 anticancer efficacy was studied in vivo using subcutaneous and orthotopic intra-brain xenograft tumor models. We demonstrated that ABTL0812 impairs tumor growth and increases disease-free survival and overall survival of mice. Furthermore, the histological analysis of tumors indicated that ABTL0812 decreases angiogenesis. Finally, we investigated the combination of ABTL0812 with the standard of care treatments for GBM radiotherapy and temozolomide in an orthotopic model, detecting that ABTL0812 potentiates the efficacy of both treatments and that the strongest effect is obtained with the triple combination of ABTL0812+radiotherapy+temozolomide. Conclusions: Overall, the present study demonstrated the anticancer efficacy of ABTL0812 as single agent and in combination with the GBM standard of care treatments in models of glioblastoma and supports the clinical investigation of ABTL0812 as a potential novel therapy for this aggressive brain tumor type.

6.
Front Artif Intell ; 5: 983008, 2022.
Article in English | MEDLINE | ID: mdl-36171798

ABSTRACT

Text simplification involves making texts easier to understand, usually for lay readers. Simplifying texts is a complex task, especially when conducted in a second language. The readability of the produced texts and the way in which authors manage the different phases of the text simplification process are influenced by their writing expertise and by their language proficiency. Training on audience awareness can be beneficial for writers, but most research so far has devoted attention to first-language writers who simplify their own texts. Therefore, this study investigated the impact of text simplification training on second-language writers (university students) who simplify already existing texts. Specifically, after identifying a first and a second phase in the text simplification process (namely, two distinct series of writing dynamics), we analyzed the impact of our training on pausing and revision behavior across phases, as well as levels of readability achieved by the students. Additionally, we examined correlations between pausing behavior and readability by using keystroke logging data and automated text analysis. We found that phases of text simplification differ along multiple dimensions, even though our training did not seem to influence pausing and revision dynamics. Our training led to texts with fewer and shorter words, and with syntactically simpler sentences. The correlation analysis showed that longer and more frequent pauses at specific text locations were linked with increased readability in the same or adjacent text locations. We conclude the paper by discussing theoretical, methodological, and pedagogical implications, alongside limitations and areas for future research.

7.
Front Pharmacol ; 13: 852941, 2022.
Article in English | MEDLINE | ID: mdl-35401175

ABSTRACT

Glioblastoma multiforme (GBM) is the most common as well as one of the most malignant types of brain cancer. Despite progress in development of novel therapies for the treatment of GBM, it remains largely incurable with a poor prognosis and a very low life expectancy. Recent studies have shown that oleandrin, a unique cardiac glycoside from Nerium oleander, as well as a defined extract (PBI-05204) that contains this molecule, inhibit growth of human glioblastoma, and modulate glioblastoma patient-derived stem cell-renewal properties. Here we demonstrate that PBI-05204 treatment leads to an increase in vitro in the sensitivity of GBM cells to radiation in which the main mechanisms are the transition from autophagy to apoptosis, enhanced DNA damage and reduced DNA repair after radiotherapy (RT) administration. The combination of PBI-05204 with RT was associated with reduced tumor progression evidenced by both subcutaneous as well as orthotopic implanted GBM tumors. Collectively, these results reveal that PBI-05204 enhances antitumor activity of RT in preclinical/murine models of human GBM. Given the fact that PBI-05204 has already been examined in Phase I and II clinical trials for cancer patients, its efficacy when combined with standard-of-care radiotherapy regimens in GBM should be explored.

8.
Cancers (Basel) ; 14(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35053455

ABSTRACT

Cell proliferation requires the orchestrated actions of a myriad of proteins regulating DNA replication, DNA repair and damage tolerance, and cell cycle. Proliferating cell nuclear antigen (PCNA) is a master regulator which interacts with multiple proteins functioning in these processes, and this makes PCNA an attractive target in anticancer therapies. Here, we show that a cell-penetrating peptide containing the AlkB homolog 2 PCNA-interacting motif (APIM), ATX-101, has antitumor activity in a panel of human glioblastoma multiforme (GBM) cell lines and patient-derived glioma-initiating cells (GICs). Their sensitivity to ATX-101 was not related to cellular levels of PCNA, or p53, PTEN, or MGMT status. However, ATX-101 reduced Akt/mTOR and DNA-PKcs signaling, and a correlation between high Akt activation and sensitivity for ATX-101 was found. ATX-101 increased the levels of γH2AX, DNA fragmentation, and apoptosis when combined with radiotherapy (RT). In line with the in vitro results, ATX-101 strongly reduced tumor growth in two subcutaneous xenografts and two orthotopic GBM models, both as a single agent and in combination with RT. The ability of ATX-101 to sensitize cells to RT is promising for further development of this compound for use in GBM.

9.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34832864

ABSTRACT

Frequent relapses and therapeutic resistance make the management of glioblastoma (GBM, grade IV glioma), extremely difficult. Therefore, it is necessary to develop new pharmacological compounds to be used as a single treatment or in combination with current therapies in order to improve their effectiveness and reduce cytotoxicity for non-tumor cells. SFX-01 is a fully synthetic and stabilized pharmaceutical product containing the α-cyclodextrin that delivers the active compound 1-isothiocyanato-4-methyl-sulfinylbutane (SFN) and maintains biological activities of SFN. In this study, we verified whether SFX-01 was active in GBM preclinical models. Our data demonstrate that SFX-01 reduced cell proliferation and increased cell death in GBM cell lines and patient-derived glioma initiating cells (GICs) with a stem cell phenotype. The antiproliferative effects of SFX-01 were associated with a reduction in the stemness of GICs and reversion of neural-to-mesenchymal trans-differentiation (PMT) closely related to epithelial-to-mesenchymal trans-differentiation (EMT) of epithelial tumors. Commonly, PMT reversion decreases the invasive capacity of tumor cells and increases the sensitivity to pharmacological and instrumental therapies. SFX-01 induced caspase-dependent apoptosis, through both mitochondrion-mediated intrinsic and death-receptor-associated extrinsic pathways. Here, we demonstrate the involvement of reactive oxygen species (ROS) through mediating the reduction in the activity of essential molecular pathways, such as PI3K/Akt/mTOR, ERK, and STAT-3. SFX-01 also reduced the in vivo tumor growth of subcutaneous xenografts and increased the disease-free survival (DFS) and overall survival (OS), when tested in orthotopic intracranial GBM models. These effects were associated with reduced expression of HIF1α which, in turn, down-regulates neo-angiogenesis. So, SFX-01 may have potent anti-glioma effects, regulating important aspects of the biology of this neoplasia, such as hypoxia, stemness, and EMT reversion, which are commonly activated in this neoplasia and are responsible for therapeutic resistance and glioma recurrence. SFX-01 deserves to be considered as an emerging anticancer agent for the treatment of GBM. The possible radio- and chemo sensitization potential of SFX-01 should also be evaluated in further preclinical and clinical studies.

10.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34639012

ABSTRACT

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. About 25% of RMS expresses fusion oncoproteins such as PAX3/PAX7-FOXO1 (fusion-positive, FP) while fusion-negative (FN)-RMS harbors RAS mutations. Radiotherapy (RT) plays a crucial role in local control but metastatic RMS is often radio-resistant. HDAC inhibitors (HDACi) radio-sensitize different cancer cells types. Thus, we evaluated MS-275 (Entinostat), a Class I and IV HDACi, in combination with RT on RMS cells in vitro and in vivo. MS-275 reversibly hampered cell survival in vitro in FN-RMS RD (RASmut) and irreversibly in FP-RMS RH30 cell lines down-regulating cyclin A, B, and D1, up-regulating p21 and p27 and reducing ERKs activity, and c-Myc expression in RD and PI3K/Akt/mTOR activity and N-Myc expression in RH30 cells. Further, MS-275 and RT combination reduced colony formation ability of RH30 cells. In both cell lines, co-treatment increased DNA damage repair inhibition and reactive oxygen species formation, down-regulated NRF2, SOD, CAT and GPx4 anti-oxidant genes and improved RT ability to induce G2 growth arrest. MS-275 inhibited in vivo growth of RH30 cells and completely prevented the growth of RT-unresponsive RH30 xenografts when combined with radiation. Thus, MS-275 could be considered as a radio-sensitizing agent for the treatment of intrinsically radio-resistant PAX3-FOXO1 RMS.


Subject(s)
Benzamides/pharmacology , Oncogene Proteins, Fusion/genetics , Paired Box Transcription Factors/genetics , Pyridines/pharmacology , Radiation Tolerance/drug effects , Radiation Tolerance/genetics , Radiation-Sensitizing Agents/pharmacology , Rhabdomyosarcoma/genetics , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/radiation effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , DNA Repair/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/radiotherapy
11.
Int J Radiat Biol ; 97(7): 943-957, 2021.
Article in English | MEDLINE | ID: mdl-33979259

ABSTRACT

PURPOSE: Herein we describe the in vitro and in vivo activity of FK228 (Romidepsin), an inhibitor of class I HDACs, in counteracting and radiosensitizing embryonal (ERMS, fusion-negative) and alveolar (ARMS, fusion-positive) rhabdomyosarcoma (RMS). METHODS: RH30 (ARMS, fusion-positive) and RD (ERMS, fusion-negative) cell lines and human multipotent mesenchymal stromal cells (HMSC) were used. Flow cytometry analysis, RT-qPCR, western blotting and enzymatic assays were performed. Irradiation was delivered by using an x-6 MV photon linear accelerator. FK228 (1.2 mg/kg) in vivo activity, combined or not with radiation therapy (2 Gy), was assessed in murine xenografts. RESULTS: Compared to HMSC, RMS expressed low levels of class I HDACs. In vitro, FK228, as single agents, reversibly downregulated class I HDACs expression and activity and induced oxidative stress, DNA damage and a concomitant growth arrest associated with PARP-1-mediated transient non-apoptotic cell death. Surviving cells upregulated the expression of cyclin A, B, D1, p27, Myc and activated PI3K/Akt/mTOR and MAPK signaling, known to be differently involved in cancer chemoresistance. Interestingly, while no radiosensitizing effects were detected, in vitro or in vivo, on RD cells, FK228 markedly radiosensitized RH30 cells by impairing antioxidant and DSBs repair pathways in vitro. Further, FK228 when combined with RT in vivo significantly reduced tumor mass in mouse RH30 xenografts. CONCLUSION: FK228 did not show antitumor activity as a single agent whilst its combination with RT resulted in radiosensitization of fusion-positive RMS cells, thus representing a possible strategy for the treatment of the most aggressive RMS subtype.


Subject(s)
Cell Transformation, Neoplastic , Depsipeptides/pharmacology , Phenotype , Radiation-Sensitizing Agents/pharmacology , Rhabdomyosarcoma/pathology , Animals , Apoptosis/radiation effects , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Line, Tumor , Humans , Mice
12.
Front Pharmacol ; 11: 552428, 2020.
Article in English | MEDLINE | ID: mdl-33013390

ABSTRACT

Glioblastoma multiform (GBM) is the most common primary glial tumor resulting in very low patient survival despite current extensive therapeutic efforts. Emerging evidence suggests that more effective treatments are required to overcome tumor heterogeneity, drug resistance and a complex tumor-supporting microenvironment. PBI-05204 is a specifically formulated botanical drug consisting of a modified supercritical C02 extract of Nerium oleander that has undergone both phase I and phase II clinical trials in the United States for treatment of patients with a variety of advanced cancers. The present study was designed to investigate the antitumor efficacy of this botanical drug against glioblastoma using both in vitro and in vivo cancer models as well as exploring efficacy against glioblastoma stem cells. All three human GBM cell lines, U87MG, U251, and T98G, were inhibited by PBI-05204 in a concentration dependent manner that was characterized by induction of apoptosis as evidenced by increased ANNEXIN V staining and caspase activities. The expression of proteins associated with both Akt and mTOR pathway was suppressed by PBI-05240 in all treated human GBM cell lines. PBI-05204 significantly suppressed U87 spheroid formation and the expression of important stem cell markers such as SOX2, CD44, and CXCR4. Oral administration of PBI-05204 resulted in a dose-dependent inhibition of U87MG, U251, and T98G xenograft growth. Additionally, PBI-05204-treated mice carrying U87-Luc cells as an orthotropic model exhibited significantly delayed onset of tumor proliferation and significantly increased overall survival. Immunohistochemical staining of xenograft derived tumor sections revealed dose-dependent declines in expression of Ki67 and CD31 positive stained cells but increased TUNEL staining. PBI-05204 represents a novel therapeutic botanical drug approach for treatment of glioblastoma as demonstrated by significant responses with in vivo tumor models. Both in vitro cell culture and immunohistochemical studies of tumor tissue suggest drug induction of tumor cell apoptosis and inhibition of PI3k/mTOR pathways as well as cancer stemness. Given the fact that PBI-05204 has already been examined in phase I and II clinical trials for cancer patients, its efficacy when combined with standard of care chemotherapy and radiotherapy should be explored in future clinical trials of this difficult to treat brain cancer.

13.
J Biomed Sci ; 27(1): 90, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32854690

ABSTRACT

BACKGROUND: The probability of local tumor control after radiotherapy (RT) remains still miserably poor in pediatric rhabdomyosarcoma (RMS). Thus, understanding the molecular mechanisms responsible of tumor relapse is essential to identify personalized RT-based strategies. Contrary to what has been done so far, a correct characterization of cellular radioresistance should be performed comparing radioresistant and radiosensitive cells with the same isogenic background. METHODS: Clinically relevant radioresistant (RR) embryonal (RD) and alveolar (RH30) RMS cell lines have been developed by irradiating them with clinical-like hypo-fractionated schedule. RMS-RR cells were compared to parental isogenic counterpart (RMS-PR) and studied following the radiobiological concept of the "6Rs", which stand for repair, redistribution, repopulation, reoxygenation, intrinsic radioresistance and radio-immuno-biology. RESULTS: RMS-RR cell lines, characterized by a more aggressive and in vitro pro-metastatic phenotype, showed a higher ability to i) detoxify from reactive oxygen species; ii) repair DNA damage by differently activating non-homologous end joining and homologous recombination pathways; iii) counteract RT-induced G2/M cell cycle arrest by re-starting growth and repopulating after irradiation; iv) express cancer stem-like profile. Bioinformatic analyses, performed to assess the role of 41 cytokines after RT exposure and their network interactions, suggested TGF-ß, MIF, CCL2, CXCL5, CXCL8 and CXCL12 as master regulators of cancer immune escape in RMS tumors. CONCLUSIONS: These results suggest that RMS could sustain intrinsic and acquire radioresistance by different mechanisms and indicate potential targets for future combined radiosensitizing strategies.


Subject(s)
Cell Line, Tumor/radiation effects , Radiation Tolerance , Rhabdomyosarcoma, Alveolar/radiotherapy , Rhabdomyosarcoma, Embryonal/radiotherapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...