Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 480: 167-177, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34801657

ABSTRACT

Decreased levels of Brain-Derived Neurotrophic Factor (BDNF) are a common finding in schizophrenia. Another well-documented protein linked to schizophrenia is intracellular Ca2+-independent Phospholipase (PLA2). However, the potential association between PLA2 and BDNF with regard to schizophrenia has yet to be examined. In the present study, male and female BDNF knockout mice, a possible genetic model of schizophrenia, were exposed to prenatal stress and tested in the nest test, open field test and T-maze. Following behavioral tests, whole brain and plasma samples were harvested to measure the activity of PLA2. BDNF knockout mice showed cognitive deficits in the T-maze. Furthermore, there was a quadratic association of PLA2 with performance in the open field test. Moreover, BDNF deficiency and female sex were associated with elevated plasma PLA2 levels. The cognitive impairment of BDNF heterozygous mice as well as their increased PLA2 activity in plasma is consistent with findings in schizophrenia patients. The particular elevation of PLA2 activity in females may partly explain sex differences of clinical symptoms in schizophrenia (e.g. age of onset, severity of symptoms). Additionally, PLA2 was significantly correlated with body and adrenal weight after weaning, whereby the latter emphasizes the possible connection of PLA2 with steroidogenesis.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Schizophrenia , Animals , Brain-Derived Neurotrophic Factor , Female , Humans , Male , Mice , Phospholipases A2
2.
Pharmacol Ther ; 210: 107520, 2020 06.
Article in English | MEDLINE | ID: mdl-32165136

ABSTRACT

While neurotransmitter dysfunction represents a key component in mental illnesses, there is now a wide agreement for a central pathophysiological hub that includes hormones, neuroinflammation, redox mechanisms as well as oxidative stress. With respect to oxidation-reduction (redox) mechanisms, preclinical and clinical evidence suggests that an imbalance in the pro/anti-oxidative homeostasis toward the increased production of substances with oxidizing potential may contribute to the etiology and manifestation of different psychiatric disorders. The substantial and continous demand for energy renders the brain highly susceptible to disturbances in its energy supply, especially following exposure to stressful events, which may lead to overproduction of reactive oxygen and nitrogen species under conditions of perturbed antioxidant defenses. This will eventually induce different molecular alterations, including extensive protein and lipid peroxidation, increased blood-brain barrier permeability and neuroinflammation, which may contribute to the changes in brain function and morphology observed in mental illnesses. This view may also reconcile different key concepts for psychiatric disorders, such as the neurodevelopmental origin of these diseases, as well as the vulnerability of selective cellular populations that are critical for specific functional abnormalities. The possibility to pharmacologically modulate the redox system is receiving increasing interest as a novel therapeutic strategy to counteract the detrimental effects of the unbalance in brain oxidative mechanisms. This review will describe the main mechanisms and mediators of the redox system and will examine the alterations of oxidative stress found in animal models of psychiatric disorders as well as in patients suffering from mental illnesses, such as schizophrenia and major depressive disorder. In addition, it will discuss studies that examined the effects of psychotropic drugs, including antipsychotics and antidepressants, on the oxidative balance as well as studies that investigated the effectiveness of a direct modulation of oxidative mechanisms in counteracting the behavioral and functional alterations associated with psychiatric disorders, which supports the promising role of the redox system as a novel therapeutic target for the improved treatment of brain disorders.


Subject(s)
Antioxidants/therapeutic use , Central Nervous System Agents/therapeutic use , Central Nervous System/drug effects , Mental Disorders/drug therapy , Oxidative Stress/drug effects , Animals , Central Nervous System/metabolism , Central Nervous System/physiopathology , Humans , Mental Disorders/metabolism , Mental Disorders/physiopathology , Mental Disorders/psychology , Oxidation-Reduction
3.
Dialogues Clin Neurosci ; 21(2): 203-224, 2019.
Article in English | MEDLINE | ID: mdl-31636494

ABSTRACT

Psychiatric disorders are a heterogeneous group of mental illnesses associated with a high social and economic burden on patients and society. The complex symptomatology of these disorders, coupled with our limited understanding of the structural and functional abnormalities affecting the brains of neuropsychiatric patients, has made it difficult to develop effective medical treatment strategies. With the advent of reprogramming technologies and recent developments in induced pluripotent stem (iPS) cell-based protocols for differentiation into defined neuronal cultures and 3-dimensional cerebral organoids, a new era of preclinical disease modeling has begun which could revolutionize drug discovery in psychiatry. This review provides an overview of iPS cell-based disease models in psychiatry and how these models contribute to our understanding of pharmacological drug action. We also propose a refined iPSC-based drug discovery pipeline, ranging from cell-based stratification of patients through improved screening and validation steps to more precise psychopharmacology.
.


Mettre la traduction ES.


Mettre la traduction FR.


Subject(s)
Cerebral Cortex/drug effects , Drug Discovery/methods , Mental Disorders/drug therapy , Neurons/drug effects , Organoids/drug effects , Psychopharmacology/methods , Tissue Culture Techniques/methods , Animals , Cerebral Cortex/physiopathology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Mental Disorders/physiopathology , Neurons/physiology
4.
Front Mol Neurosci ; 12: 166, 2019.
Article in English | MEDLINE | ID: mdl-31379496

ABSTRACT

A growing body of evidence supports the close relationship between major depressive disorder (MDD), a severe psychiatric disease more common among women than men, and alterations of the immune/inflammatory system. However, despite the large number of studies aimed at understanding the molecular bases of this association, a lack of information exists on the potential cross-talk between systems known to be involved in depression and components of the inflammatory response, especially with respect to sex differences. Brain-derived neurotrophic factor (BDNF) is a neurotrophin with a well-established role in MDD etiopathology: it is altered in depressed patients as well as in animal models of the disease and its changes are restored by antidepressant drugs. Interestingly, this neurotrophin is also involved in the inflammatory response. Indeed, it can be secreted by microglia, the primary innate immune cells in the central nervous system whose functions may be in turn regulated by BDNF. With these premises, in this study, we investigated the reciprocal impact of BDNF and the immune system by evaluating the neuroinflammatory response in male and female BDNF-heterozygous mutant mice acutely treated with the cytokine-inducer lipopolysaccharide (LPS). Specifically, we assessed the potential onset of an LPS-induced sickness behavior as well as changes of inflammatory mediators in the mouse hippocampus and frontal cortex, with respect to both genotype and sex. We found that the increased inflammatory response induced by LPS in the brain of male mice was independent of the genotype, whereas in the female, it was restricted to the heterozygous mice with no changes in the wild-type group, suggestive of a role for BDNF in the sex-dependent effect of the inflammatory challenge. Considering the involvement of both BDNF and neuroinflammation in several psychiatric diseases and the diverse incidence of such pathologies in males and females, a deeper investigation of the mechanisms underlying their interaction may have a critical translational relevance.

5.
World J Biol Psychiatry ; 19(5): 390-401, 2018 08.
Article in English | MEDLINE | ID: mdl-28337940

ABSTRACT

OBJECTIVES: Several studies reported that antidepressant drugs have immune-regulatory effects by acting on specific inflammatory mediators. However, considering the highly complex nature of the inflammatory response, we have adopted an unbiased genome-wide strategy to investigate the immune-regulatory activity of the antidepressant agomelatine in modulating the response to an acute inflammatory challenge. METHODS: Microarray analysis was used to identify genes modulated in the ventral hippocampus of adult rats chronically treated with agomelatine (40 mg/kg, os) before being challenged with a single injection of lipopolysaccharide (LPS; 250 µg/kg, i.p.). RESULTS: The administration of LPS induced the transcription of 284 genes mainly associated with pathways related to the immune/inflammatory system. Agomelatine modulated pathways not only connected to its antidepressant activity, but was also able to prevent the activation of genes induced by LPS. Further comparisons between gene lists of the diverse experimental groups led to the identification of a few transcripts modulated by LPS on which agomelatine has the larger effect of normalisation. Among them, we found the pro-inflammatory cytokine Il-1ß and, interestingly, the metabotropic glutamatergic transporter Grm2. CONCLUSIONS: These results are useful to better characterise the association between depression and inflammation, revealing new potential targets for pharmacological intervention for depression associated to inflammation.


Subject(s)
Acetamides/pharmacology , Antidepressive Agents/pharmacology , Hippocampus/drug effects , Hippocampus/immunology , Inflammation/prevention & control , Transcription, Genetic/drug effects , Transcription, Genetic/immunology , Acetamides/administration & dosage , Animals , Antidepressive Agents/administration & dosage , Disease Models, Animal , Genome , Inflammation/chemically induced , Lipopolysaccharides/pharmacology , Male , Microarray Analysis , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...