Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Sci ; 31(4): 987-996, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38030813

ABSTRACT

The use of plasma cell-free DNA (cfDNA) as a useful biomarker in obstetric clinical practice has been delayed due to the lack of reliable quantification protocols. We developed a protocol to quantify plasma cfDNA using an internal standard strategy to overcome difficulties posed by low levels and high fragmentation of cfDNA. cfDNA was isolated from plasma samples of non-pregnant (NP, n = 26) and pregnant (P, n = 26) women using a commercial kit and several elution volumes were evaluated. qPCR parameters were optimized for cfDNA quantification, and several quantities of a recombinant standard were evaluated as internal standard. Absolute quantification was performed using a standard curve and the quality of the complete method was evaluated. cfDNA was eluted in a 50-µl volume, actin-ß (ACTB) was selected as the target gene, and qPCR parameters were optimized. The ACTB standard was constructed and 1000 copies were selected as internal standard. The standard curve showed R2 = 0.993 and E = 109.7%, and the linear dynamic range was defined between 102 and 106 ACTB copies/tube. Repeatability and reproducibility in terms of CV were 19% and up to 49.5% for ACTB copies per milliliter of plasma, respectively. The range of cfDNA levels was 428-18,851 copies/mL in NP women and 4031-2,019,363 copies/mL in P women, showing significant differences between the groups. We recommend the application of internal standard strategy for a reliable plasma cfDNA quantification. This methodology holds great potential for a future application in the obstetric field.


Subject(s)
Cell-Free Nucleic Acids , Pregnant Women , Humans , Female , Pregnancy , Reproducibility of Results , Cell-Free Nucleic Acids/genetics , Biomarkers
2.
Mol Cell Endocrinol ; 510: 110820, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32315720

ABSTRACT

Agrochemicals or pesticides are compounds widely used to prevent, destroy or mitigate pests such as insects, rodents, herbs and weeds. However, most of them also act as environmental estrogens, anti-estrogens and/or antiandrogenic chemicals. In addition, both herbicides (such as glyphosate and paraquat) and insecticides (such as pyrethroids, organophosphates, neonicotinoids and rotenone) have been shown to exert significant adverse effects on hippocampal neurogenesis. These effects are particularly important because neurogenesis dysregulation could be associated with cognitive decline and neuropathologies such as Alzheimer's disease. This review focuses on the most commonly used agrochemicals in Argentina and their effects on the hippocampal neurogenesis of mammals. It also discusses the disruption of hormone synthesis and action as a possible mechanism through which these chemical compounds could alter the brain functions. Finally, we propose some lines of research to study the potential endocrine mechanisms involved in the effects of agrochemicals on human health and biodiversity.


Subject(s)
Agrochemicals/toxicity , Neurogenesis/drug effects , Animals , Endocrine System/drug effects , Herbicides/toxicity , Humans , Insecticides/toxicity , Pesticides/toxicity
3.
Mol Cell Endocrinol ; 499: 110614, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31606416

ABSTRACT

Bisphenol A (BPA) is a compound used in the polymerization of plastic polycarbonates. It is an endocrine disruptor and it has been postulated to be an obesogen. Our objective was to determine the influence of perinatal exposure to BPA on body weight, hormone levels, metabolic parameters and hypothalamic signals that regulate food intake and kisspeptin system in adult male rats. Male rats were exposed to 50 µg/kg/day of BPA or vehicle from day 9 of gestation to weaning in the drinking water. Since weaning, they were fed with control or high fat diet for 20 weeks. Perinatal exposure to BPA impaired glucose homeostasis, induced obesity and increased food intake in adult male rats altering hypothalamic signals, partially mimicking and/or producing an exacerbation of the effects of feeding fat diet. We also observed an increase in kisspeptin expression by BPA exposure. Evidences shown in this work support the metabolic disruptor hypothesis for BPA.


Subject(s)
Benzhydryl Compounds/adverse effects , Endocrine Disruptors/adverse effects , Kisspeptins/metabolism , Obesity/chemically induced , Phenols/adverse effects , Prenatal Exposure Delayed Effects/metabolism , Animals , Body Weight/drug effects , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Glucose/metabolism , Male , Obesity/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...