Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Article in English | MEDLINE | ID: mdl-38198377

ABSTRACT

The global reemergence of measles in 2018-2019 reinforces the relevance of high-coverage immunization to maintain the disease elimination. During an outbreak in the Sao Paulo State in 2019, several measles cases were reported in individuals who were adequately vaccinated according to the current immunization schedule recommends. This study aimed to assess measles IgG antibody seropositivity and titers in previously vaccinated adults. A cross-sectional study was conducted at CRIE-HC-FMUSP (Sao Paulo, Brazil) in 2019. It included healthy adults who had received two or more Measles-Mumps-Rubella vaccines (MMR) and excluded individuals with immunocompromising conditions. Measles IgG antibodies were measured and compared by ELISA (Euroimmun®) and chemiluminescence (LIASON®). The association of seropositivity and titers with variables of interest (age, sex, profession, previous measles, number of measles-containing vaccine doses, interval between MMR doses, and time elapsed since the last MMR dose) was analyzed. A total of 162 participants were evaluated, predominantly young (median age 30 years), women (69.8%) and healthcare professionals (61.7%). The median interval between MMR doses was 13.2 years, and the median time since the last dose was 10.4 years. The seropositivity rate was 32.7% by ELISA and 75.3% by CLIA, and a strong positive correlation was found between the tests. Multivariate analyses revealed that age and time since the last dose were independently associated with positivity. Despite being a single-center evaluation, our results suggest that measles seropositivity may be lower than expected in adequately immunized adults. Seropositivity was higher among older individuals and those with a shorter time since the last MMR vaccine dose.


Subject(s)
Antibodies, Viral , Measles , Humans , Female , Adult , Cross-Sectional Studies , Brazil/epidemiology , Disease Outbreaks , Measles/prevention & control
2.
Article in English | LILACS-Express | LILACS | ID: biblio-1529456

ABSTRACT

ABSTRACT The global reemergence of measles in 2018-2019 reinforces the relevance of high-coverage immunization to maintain the disease elimination. During an outbreak in the Sao Paulo State in 2019, several measles cases were reported in individuals who were adequately vaccinated according to the current immunization schedule recommends. This study aimed to assess measles IgG antibody seropositivity and titers in previously vaccinated adults. A cross-sectional study was conducted at CRIE-HC-FMUSP (Sao Paulo, Brazil) in 2019. It included healthy adults who had received two or more Measles-Mumps-Rubella vaccines (MMR) and excluded individuals with immunocompromising conditions. Measles IgG antibodies were measured and compared by ELISA (Euroimmun®) and chemiluminescence (LIASON®). The association of seropositivity and titers with variables of interest (age, sex, profession, previous measles, number of measles-containing vaccine doses, interval between MMR doses, and time elapsed since the last MMR dose) was analyzed. A total of 162 participants were evaluated, predominantly young (median age 30 years), women (69.8%) and healthcare professionals (61.7%). The median interval between MMR doses was 13.2 years, and the median time since the last dose was 10.4 years. The seropositivity rate was 32.7% by ELISA and 75.3% by CLIA, and a strong positive correlation was found between the tests. Multivariate analyses revealed that age and time since the last dose were independently associated with positivity. Despite being a single-center evaluation, our results suggest that measles seropositivity may be lower than expected in adequately immunized adults. Seropositivity was higher among older individuals and those with a shorter time since the last MMR vaccine dose.

3.
Mol Med ; 28(1): 153, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36510129

ABSTRACT

BACKGROUND: Multisystem Inflammatory Syndrome in Children (MIS-C) is a life-threatening complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which manifests as a hyper inflammatory process with multiorgan involvement in predominantly healthy children in the weeks following mild or asymptomatic coronavirus disease 2019 (COVID-19). However, host monogenic predisposing factors to MIS-C remain elusive. METHODS: Herein, we used whole exome sequencing (WES) on 16 MIS-C Brazilian patients to identify single nucleotide/InDels variants as predisposition factors associated with MIS-C. RESULTS: We identified ten very rare variants in eight genes (FREM1, MPO, POLG, C6, C9, ABCA4, ABCC6, and BSCL2) as the most promising candidates to be related to a higher risk of MIS-C development. These variants may propitiate a less effective immune response to infection or trigger the inflammatory response or yet a delayed hyperimmune response to SARS-CoV-2. Protein-Protein Interactions (PPIs) among the products of the mutated genes revealed an integrated network, enriched for immune and inflammatory response mechanisms with some of the direct partners representing gene products previously associated with MIS-C and Kawasaki disease (KD). In addition, the PPIs direct partners are also enriched for COVID-19-related gene sets. HLA alleles prediction from WES data allowed the identification of at least one risk allele in 100% of the MIS-C patients. CONCLUSIONS: This study is the first to explore host MIS-C-associated variants in a Latin American admixed population. Besides expanding the spectrum of MIS-C-associated variants, our findings highlight the relevance of using WES for characterising the genetic interindividual variability associated with COVID-19 complications and ratify the presence of overlapping/convergent mechanisms among MIS-C, KD and COVID-19, crucial for future therapeutic management.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , COVID-19/complications , COVID-19/genetics , Genetic Predisposition to Disease , Systemic Inflammatory Response Syndrome/genetics , ATP-Binding Cassette Transporters
5.
Cell Mol Life Sci ; 79(6): 298, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585332

ABSTRACT

BACKGROUND: Mood disorders have been associated with risk of clinical relapses in multiple sclerosis (MS), a demyelinating disease mediated by myelin-specific T cells. OBJECTIVES: We aimed to investigate the impact of major depressive disorder (MDD) and cytokine profile of T-cells in relapsing remitting MS patients. METHODS: For our study, plasma and PBMC were obtained from 60 MS patients (30 with lifetime MDD) in remission phase. The PBMC cultures were stimulated with anti-CD3/anti-CD28 beads or myelin basic protein (MBP), and effector and regulatory T cell phenotypes were determined by flow cytometry. The cytokine levels, both in the plasma or in the supernatants collected from PBMC cultures, were quantified by Luminex. In some experiments, the effect of serotonin (5-HT) was investigated. RESULTS: Here, higher Th17-related cytokine levels in response to anti-CD3/anti-CD28 and MBP were quantified in the plasma and PBMC cultures of the MS/MDD group in comparison with MS patients. Further, elevated frequency of CD4+ and CD8+ T cells capable of producing IL-17, IL-22 and GM-CSF was observed in depressed patients. Interestingly, the percentage of myelin-specific IFN-γ+IL-17+ and IFN-γ+GM-CSF+ CD4+ T cells directly correlated with neurological disabilities. In contrast, the occurrence of MDD reduced the proportion of MBP-specific CD39+Tregs subsets. Notably, the severity of both neurological disorder and depressive symptoms inversely correlated with these Tregs. Finally, the addition of 5-HT downregulated the release of Th17-related cytokines in response to anti-CD3/anti-CD28 and myelin antigen. CONCLUSIONS: In summary, our findings suggested that recurrent major depression, by favoring imbalances of effector Th17 and Treg cell subsets, contributes to MS severity.


Subject(s)
Apyrase , Autoantigens , Depressive Disorder, Major , Multiple Sclerosis , Myelin Sheath , T-Lymphocytes, Regulatory , Th17 Cells , Apyrase/immunology , Autoantigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Depressive Disorder, Major/blood , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interleukin-17/immunology , Leukocytes, Mononuclear/immunology , Multiple Sclerosis/immunology , Myelin Sheath/immunology , Serotonin/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
7.
Virus Evol ; 7(2): veab087, 2021.
Article in English | MEDLINE | ID: mdl-34725568

ABSTRACT

The emergence and widespread circulation of severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) or interest impose an enhanced threat to global public health. In Brazil, one of the countries most severely impacted throughout the pandemic, a complex dynamics involving variants co-circulation and turnover events has been recorded with the emergence and spread of VOC Gamma in Manaus in late 2020. In this context, we present a genomic epidemiology investigation based on samples collected between December 2020 and May 2021 in the second major Brazilian metropolis, Rio de Janeiro. By sequencing 244 novel genomes through all epidemiological weeks in this period, we were able to document the introduction and rapid dissemination of VOC Gamma in the city, driving the rise of the third local epidemic wave. Molecular clock analysis indicates that this variant has circulated locally since the first weeks of 2021 and only 7 weeks were necessary for it to achieve a frequency above 70 per cent, consistent with rates of growth observed in Manaus and other states. Moreover, a Bayesian phylogeographic reconstruction indicates that VOC Gamma spread throughout Brazil between December 2020 and January 2021 and that it was introduced in Rio de Janeiro through at least 13 events coming from nearly all regions of the country. Comparative analysis of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) cycle threshold (Ct) values provides further evidence that VOC Gamma induces higher viral loads (N1 target; mean reduction of Ct: 2.7, 95 per cent confidence interval = ± 0.7). This analysis corroborates the previously proposed mechanistic basis for this variant-enhanced transmissibility and distinguished epidemiological behavior. Our results document the evolution of VOC Gamma and provide independent assessment of scenarios previously studied in Manaus, therefore contributing to the better understanding of the epidemiological dynamics currently being surveyed in other Brazilian regions.

8.
Viruses ; 13(11)2021 11 10.
Article in English | MEDLINE | ID: mdl-34835060

ABSTRACT

Congenital Zika syndrome (CZS) is characterized by a diverse group of congenital malformations induced by ZIKV infection during pregnancy. Type III interferons have been associated with placental immunity against ZIKV and restriction of vertical transmission in mice, and non-coding single-nucleotide polymorphisms (SNPs) on these genes are well known to influence susceptibility to other viral infections. However, their effect on ZIKV pathogenesis has not yet been explored. To investigate whether maternal non-coding SNPs at IFNL genes are associated with CZS, 52 women infected with ZIKV during pregnancy were enrolled in a case-control association study. A total of 28 women were classified as cases and 24 as controls based on the presence or absence of CZS in their infants, and seven Interferon-λ non-coding SNPs (rs12980275, rs8099917, rs4803217, rs4803219, rs8119886, rs368234815, rs12979860) were genotyped. The results of logistic regression analyses show an association between the G allele at rs8099917 and increased susceptibility to CZS under a log-additive model (adjustedOR = 2.80; 95%CI = 1.14-6.91; p = 0.02), after adjustment for trimester of infection and genetic ancestry. These results provide evidence of an association between Interferon-λ SNPs and CZS, suggesting rs8099917 as a promising candidate for further studies on larger cohorts.


Subject(s)
Interferons/genetics , Pregnancy Complications, Infectious/genetics , Zika Virus Infection/congenital , Zika Virus Infection/genetics , Alleles , Brazil , Case-Control Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Polymorphism, Single Nucleotide , Pregnancy , Zika Virus
9.
Front Cell Infect Microbiol ; 11: 714088, 2021.
Article in English | MEDLINE | ID: mdl-34568093

ABSTRACT

Dengue virus (DENV) is the most widespread arbovirus, responsible for a wide range of clinical manifestations, varying from self-limited illness to severe hemorrhagic fever. Dengue severity is associated with host intense proinflammatory response and monocytes have been considered one of the key cell types involved in the early steps of DENV infection and immunopathogenesis. To better understand cellular mechanisms involved in monocyte infection by DENV, we analyzed the expression levels of 754 human microRNAs in DENV-infected THP-1 cells, a human monocytic cell line. Eleven human microRNAs showed differential expression after DENV infection and gene ontology and enrichment analysis revealed biological processes potentially affected by these molecules. Five downregulated microRNAs were significantly linked to cellular response to stress, four to cell death/apoptosis, two to innate immune responses and one upregulated to vesicle mediated, TGF-ß signaling, phosphatidylinositol mediated signaling, lipid metabolism process and blood coagulation.


Subject(s)
Dengue , MicroRNAs , Monocytes , Dengue/genetics , Dengue Virus , Humans , Immunity, Innate , MicroRNAs/genetics , Monocytes/metabolism , Monocytes/virology , THP-1 Cells
10.
Front Pharmacol ; 12: 542342, 2021.
Article in English | MEDLINE | ID: mdl-34366834

ABSTRACT

Genetic variability was linked with individual responses to treatment and susceptibility to malaria by Plasmodium vivax. Polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatment. The aim of the study was to investigate whether or not CYP2D6 single nucleotide polymorphisms rs1065852, rs38920-97, rs16947 and rs28371725 are unequally distributed in malaria by Plasmodium vivax individuals from the Brazilian Amazon region. The blood samples were collected from 220 unrelated Plasmodium vivax patients from five different endemic areas. Genotyping was performed using SNaPshot® and real-time polymerase chain reaction methods. In all five areas, the rs1065852 (CYP2D6*10, C.100C > T), rs3892097 (CYP2D6*4, 1846C > T) and rs16947 (CYP2D6*2, C.2850G > A), as a homozygous genotype, showed the lowest frequencies. The rs28371725 (CYP2D6*41, 2988G > A) homozygous genotype was not detected, while the allele A was found in a single patient from Macapá region. No deviations from Hardy-Weinberg equilibrium were found, although a borderline p-value was observed (p = 0.048) for the SNP rs3892097 in Goianésia do Pará, Pará state. No significant associations were detected in these frequencies among the five studied areas. For the SNP rs3892097, a higher frequency was observed for the C/T heterozygous genotype in the Plácido de Castro and Macapá, Acre and Amapá states, respectively. The distribution of the CYP2D6 alleles investigated in the different areas of the Brazilian Amazon is not homogeneous. Further investigations are necessary in order to determine which alleles might be informative to assure optimal drug dosing recommendations based on experimental pharmacogenetics.

11.
Sci Rep ; 11(1): 9658, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33958627

ABSTRACT

ACE2 and TMPRSS2 are key players on SARS-CoV-2 entry into host cells. However, it is still unclear whether expression levels of these factors could reflect disease severity. Here, a case-control study was conducted with 213 SARS-CoV-2 positive individuals where cases were defined as COVID-19 patients with respiratory distress requiring oxygen support (N = 38) and controls were those with mild to moderate symptoms of the disease who did not need oxygen therapy along the entire clinical course (N = 175). ACE2 and TMPRSS2 mRNA levels were evaluated in nasopharyngeal swab samples by RT-qPCR and logistic regression analyzes were applied to estimate associations with respiratory outcomes. ACE2 and TMPRSS2 levels positively correlated with age, which was also strongly associated with respiratory distress. Increased nasopharyngeal ACE2 levels showed a protective effect against this outcome (adjOR = 0.30; 95% CI 0.09-0.91), while TMPRSS2/ACE2 ratio was associated with risk (adjOR = 4.28; 95% CI 1.36-13.48). On stepwise regression, TMPRSS2/ACE2 ratio outperformed ACE2 to model COVID-19 severity. When nasopharyngeal swabs were compared to bronchoalveolar lavages in an independent cohort of COVID-19 patients under mechanical ventilation, similar expression levels of these genes were observed. These data suggest nasopharyngeal TMPRSS2/ACE2 as a promising candidate for further prediction models on COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Respiratory Distress Syndrome/genetics , Serine Endopeptidases/genetics , Adult , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/therapy , Case-Control Studies , Down-Regulation , Female , Humans , Male , Middle Aged , Nasopharynx/metabolism , RNA, Messenger/genetics , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Up-Regulation
12.
PLoS One ; 15(11): e0241426, 2020.
Article in English | MEDLINE | ID: mdl-33166298

ABSTRACT

Circumsporozoite protein (CSP) is the primary pre-erythrocytic vaccine target in Plasmodium species. Knowledge about their genetic diversity can help predict vaccine efficacy and the spread of novel parasite variants. Thus, we investigated pvcsp gene polymorphisms in 219 isolates (136 from Brazilian Amazon [BA], 71 from Rio de Janeiro Atlantic Forest [AF], and 12 from non-Brazilian countries [NB]). Forty-eight polymorphic sites were detected, 46 in the central repeat region (CR), and two in the C-terminal region. Also, the CR presents InDels and a variable number of repeats. All samples correspond to the VK210 variant, and 24 VK210 subtypes based on CR. Nucleotide diversity (π = 0.0135) generated a significant number of haplotypes (168) with low genetic differentiation between the Brazilian regions (Fst = 0.208). The haplotype network revealed similar distances among the BA and AF regions. The linkage disequilibrium indicates that recombination does not seem to be acting in diversity, reinforcing natural selection's role in accelerating adaptive evolution. The high diversity (low Fst) and polymorphism frequencies could be indicators of balancing selection. Although malaria in BA and AF have distinct vector species and different host immune pressures, consistent genetic signature was found in two regions. The immunodominant B-cell epitope mapped in the CR varies from seven to 19 repeats. The CR T-cell epitope is conserved only in 39 samples. Concerning to C-terminal region, the Th2R epitope presented nonsynonymous SNP only in 6% of Brazilian samples, and the Th3R epitope remained conserved in all studied regions. We conclude that, although the uneven distribution of alleles may jeopardize the deployment of vaccines directed to a specific variable locus, a unique vaccine formulation could protect populations in all Brazilian regions.


Subject(s)
Genetic Variation , Parasites/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Selection, Genetic , Amino Acid Sequence , Amino Acid Substitution , Animals , Atlantic Ocean , Brazil , Codon/genetics , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Geography , Haplotypes/genetics , INDEL Mutation/genetics , Linkage Disequilibrium/genetics , Nucleotides/genetics , Peptides/chemistry , Phylogeny , Plasmodium vivax/isolation & purification , Polymorphism, Genetic , Protozoan Proteins/chemistry
13.
Infect Genet Evol ; 86: 104592, 2020 12.
Article in English | MEDLINE | ID: mdl-33059085

ABSTRACT

Plasmodium vivax merozoite surface proteins (PvMSP) 1 and 7 are considered vaccine targets. Genetic diversity knowledge is crucial to assess their potential as immunogens and to provide insights about population structure in different epidemiological contexts. Here, we investigate the variability of pvmsp-142, pvmsp-7E, and pvmsp-7F genes in 227 samples from the Brazilian Amazon (BA) and Rio de Janeiro Atlantic Forest (AF). pvmsp-142 has 63 polymorphisms - 57 nonsynonymous - generating a nucleotide diversity of π = 0.009 in AF, and π = 0.018 in BA. In pvmsp-7E, 134 polymorphisms - 103 nonsynonymous - generate the nucleotide diversity of π = 0.027 in AF, and π = 0.042 in BA. The pvmsp-7F has only two SNPs - A610G and A1054T -, with nucleotide diversity of π = 0.0004 in AF, and π = 0.0007 in BA. The haplotype diversity of pvmsp-142, pvmsp-7E, and pvmsp-7F genes is 0.997, 1.00, and 0.649, respectively. None of the pvmsp-142 or pvmsp-7E sequences are identical to the Salvador 1 strain's sequence. Conversely, most of pvmsp-7F sequences (94/48%) are identical to Sal-1. We evaluated eight B-cell epitopes in pvmsp-7E, four of them showed higher nucleotide diversity compared to pvmsp-7E's epitopes. Positive selection was detected in pvmsp-142, pvmsp-7E central region, and pvmsp-7F with Tajima's D. In pvmsp-7E, the significant nucleotide and haplotype diversities with low genetic differentiation, could be indicative of balancing selection. The genetic differentiation of pvmsp-142 (0.315) and pvmsp-7F (0.354) genes between AF and BA regions is significant, which is not the case for pvmsp-7E (0.193). We conclude that pvmsp-142 and pvmsp-7E have great genetic diversity even in AF region, an enclosure area with deficient transmission levels of P. vivax zoonotic malaria. In both Brazilian regions, pvmsp-119, pvmsp-7E, and pvmsp-7F are conserved, most likely due to their roles in parasite survival, and could be considered potential targets for a "blood-stage vaccine".


Subject(s)
Genetic Variation , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Membrane Proteins/genetics , Merozoite Surface Protein 1/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Brazil/epidemiology , Host-Parasite Interactions , Humans , Malaria, Vivax/transmission , Public Health Surveillance
15.
Mem Inst Oswaldo Cruz ; 114: e190004, 2019.
Article in English | MEDLINE | ID: mdl-31141020

ABSTRACT

BACKGROUND: Dengue is an arthropod-borne viral disease with a majority of asymptomatic individuals and clinical manifestations varying from mild fever to severe and potentially lethal forms. An increasing number of genetic studies have outlined the association between host genetic variations and dengue severity. Genes associated to viral recognition and entry, as well as those encoding mediators of the immune response against infection are strong candidates for association studies. OBJECTIVES: The aim of this study was to investigate the association between MBL2, CLEC5A, ITGB3 and CCR5 genes and dengue severity in children. METHODS: A matched case-control study was conducted and 19 single nucleotide polymorphisms (SNPs) were investigated. FINDINGS: No associations were observed in single SNP analysis. However, when MBL2 SNPs were combined in haplotypes, the allele rs7095891G/rs1800450C/ rs1800451C/rs4935047A/rs930509G/rs2120131G/rs2099902C was significantly associated to risk of severe dengue under α = 0.05 (aOR = 4.02; p = 0.02). A second haplotype carrying rs4935047G and rs7095891G alleles was also associated to risk (aOR = 1.91; p = 0.04). MAIN CONCLUSIONS: This is the first study to demonstrate the association between MBL2 haplotypes and dengue severity in Brazilians including adjustment for genetic ancestry. These results reinforce the role of mannose binding lectin in immune response to DENV.


Subject(s)
Dengue/genetics , Integrin beta3/genetics , Lectins, C-Type/genetics , Mannose-Binding Lectin/genetics , Receptors, CCR5/genetics , Receptors, Cell Surface/genetics , Case-Control Studies , Child , Female , Genotype , Haplotypes , Humans , Male , Polymorphism, Single Nucleotide , Severity of Illness Index
16.
Mem. Inst. Oswaldo Cruz ; 114: e190004, 2019. tab
Article in English | LILACS | ID: biblio-1002688

ABSTRACT

BACKGROUND Dengue is an arthropod-borne viral disease with a majority of asymptomatic individuals and clinical manifestations varying from mild fever to severe and potentially lethal forms. An increasing number of genetic studies have outlined the association between host genetic variations and dengue severity. Genes associated to viral recognition and entry, as well as those encoding mediators of the immune response against infection are strong candidates for association studies. OBJECTIVES The aim of this study was to investigate the association between MBL2, CLEC5A, ITGB3 and CCR5 genes and dengue severity in children. METHODS A matched case-control study was conducted and 19 single nucleotide polymorphisms (SNPs) were investigated. FINDINGS No associations were observed in single SNP analysis. However, when MBL2 SNPs were combined in haplotypes, the allele rs7095891G/rs1800450C/ rs1800451C/rs4935047A/rs930509G/rs2120131G/rs2099902C was significantly associated to risk of severe dengue under α = 0.05 (aOR = 4.02; p = 0.02). A second haplotype carrying rs4935047G and rs7095891G alleles was also associated to risk (aOR = 1.91; p = 0.04). MAIN CONCLUSIONS This is the first study to demonstrate the association between MBL2 haplotypes and dengue severity in Brazilians including adjustment for genetic ancestry. These results reinforce the role of mannose binding lectin in immune response to DENV.


Subject(s)
Humans , Receptors, CCR5 , Crystallization , Dengue/epidemiology , Aedes
17.
PLoS One ; 13(11): e0207664, 2018.
Article in English | MEDLINE | ID: mdl-30481211

ABSTRACT

Euphorbia umbellata (E. umbellata) belongs to Euphorbiaceae family, popularly known as Janauba, and its latex contains a combination of phorbol esters with biological activities described to different cellular protein kinase C (PKC) isoforms. Here, we identified deoxi-phorbol esters present in E. umbellata latex alcoholic extract that are able to increase HIV transcription and reactivate virus from latency models. This activity is probably mediated by NF-kB activation followed by nuclear translocation and binding to the HIV LTR promoter. In addition, E. umbellata latex extract induced the production of pro inflammatory cytokines in vitro in human PBMC cultures. This latex extract also activates latent virus in human PBMCs isolated from HIV positive patients as well as latent SIV in non-human primate primary CD4+ T lymphocytes. Together, these results indicate that the phorbol esters present in E. umbellata latex are promising candidate compounds for future clinical trials for shock and kill therapies to promote HIV cure and eradication.


Subject(s)
Euphorbia/chemistry , HIV-1/drug effects , Latex/chemistry , Phorbol Esters/pharmacology , Plant Extracts/pharmacology , Virus Activation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Ethanol/chemistry , HIV-1/physiology , Host-Pathogen Interactions/drug effects , Humans , Jurkat Cells , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Virus Latency/drug effects , Virus Latency/physiology
18.
Curr HIV Res ; 12(5): 347-58, 2014.
Article in English | MEDLINE | ID: mdl-25174839

ABSTRACT

The 2´3´-dialdehyde of ATP or oxidized ATP (oATP) is a compound known for specifically making covalent bonds with the nucleotide-binding site of several ATP-binding enzymes and receptors. We investigated the effects of oATP and other oxidized purines on HIV-1 infection and we found that this compound inhibits HIV-1 and SIV infection by blocking early steps of virus replication. oATP, oxidized ADP (oADP), and oxidized Adenosine (oADO) impact the natural activity of endogenous reverse transcriptase enzyme (RT) in cell free virus particles and are able to inhibit viral replication in different cell types when added to the cell cultures either before or after infection. We used UFLC-UV to show that both oADO and oATP can be detected in the cell after being added in the extracellular medium. oATP also suppresses RT activity and replication of the HIV-1 resistant variants M184V and T215Y. We conclude that oATP, oADP and oADO display anti HIV-1 activity that is at in least in part due to inhibitory activity on HIV-1 RT.


Subject(s)
Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/analogs & derivatives , Adenosine/pharmacology , Anti-HIV Agents/pharmacology , HIV Infections/drug therapy , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , Virus Replication/drug effects , Adenosine Triphosphate/pharmacology , Cells, Cultured , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , HIV-1/physiology , Humans , Macrophages/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...