Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 6(3)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971732

ABSTRACT

Commensal yeast from the genus Candida is part of the healthy human microbiota. In some cases, Candida spp. dysbiosis can result in candidiasis, the symptoms of which may vary from mild localized rashes to severe disseminated infections. The most prevalent treatments against candidiasis involve fluconazole, itraconazole, miconazole, and caspofungin. Moreover, amphotericin B associated with prolonged azole administration is utilized to control severe cases. Currently, numerous guidelines recommend echinocandins to treat invasive candidiasis. However, resistance to these antifungal drugs has increased dramatically over recent years. Considering this situation, new therapeutic alternatives should be studied to control candidiasis, which has become a major medical concern. Limonene belongs to the group of terpene molecules, known for their pharmacological properties. In this study, we evaluated in vitro the limonene concentration capable of inhibiting the growth of yeast from the genus Candida susceptible or resistant to antifungal drugs and its capacity to induce fungal damage. In addition, intravaginal fungal infection assays using a murine model infected by Candida albicans were carried out and the fungal burden, histopathology, and scanning electron microscopy were evaluated. All of our results suggest that limonene may play a protective role against the infection process by yeast from the genus Candida.

2.
Cell Host Microbe ; 27(3): 317-319, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32164842

ABSTRACT

Pathogens rely on nutrient assimilation, particularly essential metal incorporation, to successfully survive in the host. In this issue of Cell Host & Microbe, Riedelberger et al. (2020) convincingly demonstrate that type I interferons (IFNs-I) promote dysregulation of iron homeostasis in macrophages upon infection with Candida glabrata and exacerbate infection.


Subject(s)
Candidiasis , Interferon Type I , Candida glabrata , Homeostasis , Humans , Iron
3.
J Immunol ; 201(2): 583-603, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29858266

ABSTRACT

Cryptococcus neoformans is a fungal pathogen with worldwide distribution. C. neoformans resides within mature phagolysosomes where it often evades killing and replicates. C. neoformans induces phagolysosomal membrane permeabilization (PMP), but the mechanism for this phenomenon and its consequences for macrophage viability are unknown. In this study, we used flow cytometry methodology in combination with cell viability markers and LysoTracker to measure PMP in J774.16 and murine bone marrow-derived macrophages infected with C. neoformans Our results showed that cells manifesting PMP were positive for apoptotic markers, indicating an association between PMP and apoptosis. We investigated the role of phospholipase B1 in C. neoformans induction of PMP. Macrophages infected with a C. neoformans Δplb1 mutant had reduced PMP compared with those infected with wild-type and phospholipase B1-complemented strains, suggesting a mechanism of action for this virulence factor. Capsular enlargement inside macrophages was identified as an additional likely mechanism for phagolysosomal membrane damage. Macrophages undergoing apoptosis did not maintain an acidic phagolysosomal pH. Induction of PMP with ciprofloxacin enhanced macrophages to trigger lytic exocytosis whereas nonlytic exocytosis was common in those without PMP. Our results suggest that modulation of PMP is a critical event in determining the outcome of C. neoformans-macrophage interaction.


Subject(s)
Cell Membrane Permeability , Cryptococcosis/immunology , Cryptococcus neoformans/physiology , Intracellular Membranes/physiology , Lysophospholipase/metabolism , Macrophages/immunology , Phagosomes/physiology , Animals , Apoptosis , Cell Line , Ciprofloxacin/pharmacology , Cryptococcus neoformans/pathogenicity , Exocytosis/drug effects , Female , Host-Pathogen Interactions , Immune Evasion , Lysophospholipase/genetics , Mice , Mice, Inbred C57BL , Mutation/genetics , Phagocytosis , Virulence
4.
PLoS Pathog ; 14(6): e1007144, 2018 06.
Article in English | MEDLINE | ID: mdl-29906292

ABSTRACT

Cryptococcus neoformans is a facultative intracellular pathogen and its interaction with macrophages is a key event determining the outcome of infection. Urease is a major virulence factor in C. neoformans but its role during macrophage interaction has not been characterized. Consequently, we analyzed the effect of urease on fungal-macrophage interaction using wild-type, urease-deficient and urease-complemented strains of C. neoformans. The frequency of non-lytic exocytosis events was reduced in the absence of urease. Urease-positive C. neoformans manifested reduced and delayed intracellular replication with fewer macrophages displaying phagolysosomal membrane permeabilization. The production of urease was associated with increased phagolysosomal pH, which in turn reduced growth of urease-positive C. neoformans inside macrophages. Interestingly, the ure1 mutant strain grew slower in fungal growth medium which was buffered to neutral pH (pH 7.4). Mice inoculated with macrophages carrying urease-deficient C. neoformans had lower fungal burden in the brain than mice infected with macrophages carrying wild-type strain. In contrast, the absence of urease did not affect survival of yeast when interacting with amoebae. Because of the inability of the urease deletion mutant to grow on urea as a sole nitrogen source, we hypothesize urease plays a nutritional role involved in nitrogen acquisition in the environment. Taken together, our data demonstrate that urease affects fitness within the mammalian phagosome, promoting non-lytic exocytosis while delaying intracellular replication and thus reducing phagolysosomal membrane damage, events that could facilitate cryptococcal dissemination when transported inside macrophages. This system provides an example where an enzyme involved in nutrient acquisition modulates virulence during mammalian infection.


Subject(s)
Brain/pathology , Cryptococcosis/pathology , Cryptococcus neoformans/enzymology , Macrophages/pathology , Phagosomes/pathology , Urease/metabolism , Virulence , Animals , Brain/enzymology , Brain/microbiology , Cells, Cultured , Cryptococcosis/microbiology , Female , Hydrogen-Ion Concentration , Macrophages/enzymology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Phagosomes/enzymology , Urease/genetics , Virulence Factors/metabolism
5.
Infect Immun ; 86(7)2018 07.
Article in English | MEDLINE | ID: mdl-29712729

ABSTRACT

The genus Cryptococcus includes several species pathogenic for humans. Until recently, the two major pathogenic species were recognized to be Cryptococcus neoformans and Cryptococcus gattii We compared the interaction of murine macrophages with three C. gattii species complex strains (WM179, R265, and WM161, representing molecular types VGI, VGIIa, and VGIII, respectively) and one C. neoformans species complex strain (H99, molecular type VNI) to ascertain similarities and differences in the yeast intracellular pathogenic strategy. The parameters analyzed included nonlytic exocytosis frequency, phagolysosomal pH, intracellular capsular growth, phagolysosomal membrane permeabilization, and macrophage transcriptional response, assessed using time-lapse microscopy, fluorescence microscopy, flow cytometry, and gene expression microarray analysis. The most striking result was that the intracellular pathogenic strategies of C. neoformans and C. gattii species complex strains were qualitatively similar, despite the species having separated an estimated 100 million years ago. Macrophages exhibited a leaky phagolysosomal membrane phenotype and nonlytic exocytosis when infected with either C. gattii or C. neoformans Conservation of the intracellular strategy among species that separated long ago suggests that it is ancient and possibly maintained by similar selection pressures through eons.


Subject(s)
Cryptococcus gattii/pathogenicity , Cryptococcus neoformans/pathogenicity , Animals , Apoptosis , Bacterial Capsules/physiology , Cryptococcus gattii/enzymology , Cryptococcus gattii/immunology , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/immunology , Exocytosis , Female , Macrophages/physiology , Mice , Phagocytosis , Phagosomes/physiology , Urease/metabolism
6.
PLoS Pathog ; 13(12): e1006763, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29194441

ABSTRACT

Until recently, NADPH oxidase (NOX) enzymes were thought to be a property of multicellularity, where the reactive oxygen species (ROS) produced by NOX acts in signaling processes or in attacking invading microbes through oxidative damage. We demonstrate here that the unicellular yeast and opportunistic fungal pathogen Candida albicans is capable of a ROS burst using a member of the NOX enzyme family, which we identify as Fre8. C. albicans can exist in either a unicellular yeast-like budding form or as filamentous multicellular hyphae or pseudohyphae, and the ROS burst of Fre8 begins as cells transition to the hyphal state. Fre8 is induced during hyphal morphogenesis and specifically produces ROS at the growing tip of the polarized cell. The superoxide dismutase Sod5 is co-induced with Fre8 and our findings are consistent with a model in which extracellular Sod5 acts as partner for Fre8, converting Fre8-derived superoxide to the diffusible H2O2 molecule. Mutants of fre8Δ/Δ exhibit a morphogenesis defect in vitro and are specifically impaired in development or maintenance of elongated hyphae, a defect that is rescued by exogenous sources of H2O2. A fre8Δ/Δ deficiency in hyphal development was similarly observed in vivo during C. albicans invasion of the kidney in a mouse model for disseminated candidiasis. Moreover C. albicans fre8Δ/Δ mutants showed defects in a rat catheter model for biofilms. Together these studies demonstrate that like multicellular organisms, C. albicans expresses NOX to produce ROS and this ROS helps drive fungal morphogenesis in the animal host.


Subject(s)
Candida albicans/growth & development , Morphogenesis , NADPH Oxidases/genetics , Reactive Oxygen Species/metabolism , Animals , Biofilms , Candida albicans/metabolism , Candidiasis/metabolism , Male , Mice , Mice, Inbred BALB C
7.
Front Microbiol ; 8: 771, 2017.
Article in English | MEDLINE | ID: mdl-28515716

ABSTRACT

Vulvovaginal and invasive candidiasis are frequent conditions in immunosuppressed individuals caused by Candida albicans and non-albicans Candida spp. Fluconazole and Amphotericin B are the main drugs used to fight the infection. However, resistance to fluconazole and other azole antifungal drugs is an important clinical problem that encourages the search for new therapeutic alternatives. In this work, we evaluate the antifungal activity of the biphosphinic cyclopalladate C7a in the in vitro and in vivo model. Our results showed fungicidal activity, with low values of minimal inhibitory concentrations and minimum fungicidal concentrations, even for fluconazole and/or miconazole resistant Candida isolates. Fluorescence microscopy and transmission electron microscopy revealed that the compound was able to inhibit the formation of hyphae/pseudohyphae and, moreover, promoted morphological alterations in cellular organelles and structures, such as disruption of cell wall, apparent mitochondrial swelling, chromatin marginalization into the nuclei and increased numbers of electron-lucent vacuoles. C7a significantly decreased the biofilm formation and reduced the viability of yeast cells in mature biofilms when tested against a virulent C. albicans strain. In vivo assays demonstrated a significant decrease of fungal burden in local (vaginal canal) and disseminated (kidneys) infection. In addition, we observed a significant increase in the survival of the systemically infected animals treated with C7a. Our results suggest C7a as a novel therapeutic agent for vaginal and disseminated candidiasis, and an alternative for conventional drug-resistant Candida.

8.
Microbes Infect ; 16(9): 788-95, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25161111

ABSTRACT

Paracoccidioidomycosis (PCM) is an endemic mycosis in Latin America. PCM is primarily caused by Paracoccidioides brasiliensis and less frequently by the recently described, closely related species Paracoccidioides lutzii. Current treatment requires protracted administration of systemic antibiotics and relapses may frequently occur despite months of initial therapy. Hence, there is a need for innovative approaches to treatment. In the present study we analyzed the impact of two monoclonal antibodies (mAbs) generated against Heat Shock 60 (Hsp60) from Histoplasma capsulatum on the interactions of P. lutzii with macrophages and on the experimental P. lutzii infection. We demonstrated that the Hsp60-binding mAbs labeled P. lutzii yeast cells and enhanced their phagocytosis by macrophage cells. Treatment of mice with the mAbs to Hsp60 before infection reduced the pulmonary fungal burden as compared to mice treated with irrelevant mAb. Hence, mAbs raised to H. capsulatum Hsp60 are protective against P. lutzii, including mAb 7B6 which was non-protective against H. capsulatum, suggesting differences in their capacity to bind to these fungi and to be recognized by macrophages. These findings indicate that mAbs raised to one dimorphic fungus may be therapeutic against additional dimorphic fungi, but also suggests that biological differences in diseases may influence whether a mAb is beneficial or harmful.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Chaperonin 60/immunology , Paracoccidioidomycosis/immunology , Animals , Antibodies, Monoclonal/immunology , Antigens, Fungal/immunology , Cells, Cultured , Cytokines/biosynthesis , Histoplasma/immunology , Liver/microbiology , Lung/pathology , Mice , Mice, Inbred BALB C , Paracoccidioides , Paracoccidioidomycosis/drug therapy , Paracoccidioidomycosis/pathology , Spleen/microbiology
9.
FEMS Microbiol Lett ; 324(1): 64-72, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22092765

ABSTRACT

Microplusin is an antimicrobial peptide isolated from the cattle tick Rhipicephalus (Boophilus) microplus. Its copper-chelating ability is putatively responsible for its bacteriostatic activity against Micrococcus luteus as microplusin inhibits respiration in this species, which is a copper-dependent process. Microplusin is also active against Cryptococcus neoformans (MIC(50) = 0.09 µM), the etiologic agent of cryptococcosis. Here, we show that microplusin is fungistatic to C. neoformans and this inhibitory effect is abrogated by copper supplementation. Notably, microplusin drastically altered the respiratory profile of C. neoformans. In addition, microplusin affects important virulence factors of this fungus. We observed that microplusin completely inhibited fungal melanization, and this effect correlates with the inhibition of the related enzyme laccase. Also, microplusin significantly inhibited the capsule size of C. neoformans. Our studies reveal, for the first time, a copper-chelating antimicrobial peptide that inhibits respiration and growth of C. neoformans and modifies two major virulence factors: melanization and formation of a polysaccharide capsule. These features suggest that microplusin, or other copper-chelation approaches, may be a promising therapeutic for cryptococcosis.


Subject(s)
Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cryptococcus neoformans/drug effects , Antifungal Agents/metabolism , Antimicrobial Cationic Peptides/metabolism , Chelating Agents/metabolism , Copper/metabolism , Microbial Sensitivity Tests , Oxygen/metabolism
10.
J Biol Chem ; 284(50): 34735-46, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-19828445

ABSTRACT

Microplusin, a Rhipicephalus (Boophilus) microplus antimicrobial peptide (AMP) is the first fully characterized member of a new family of cysteine-rich AMPs with histidine-rich regions at the N and C termini. In the tick, microplusin belongs to the arsenal of innate defense molecules active against bacteria and fungi. Here we describe the NMR solution structure of microplusin and demonstrate that the protein binds copper II and iron II. Structured as a single alpha-helical globular domain, microplusin consists of five alpha-helices: alpha1 (residues Gly-9 to Arg-21), alpha2 (residues Glu-27 to Asn-40), alpha3 (residues Arg-44 to Thr-54), alpha4 (residues Leu-57 to Tyr-64), and alpha5 (residues Asn-67 to Cys-80). The N and C termini are disordered. This structure is unlike any other AMP structures described to date. We also used NMR spectroscopy to map the copper binding region on microplusin. Finally, using the Gram-positive bacteria Micrococcus luteus as a model, we studied of mode of action of microplusin. Microplusin has a bacteriostatic effect and does not permeabilize the bacterial membrane. Because microplusin binds metals, we tested whether this was related to its antimicrobial activity. We found that the bacteriostatic effect of microplusin was fully reversed by supplementation of culture media with copper II but not iron II. We also demonstrated that microplusin affects M. luteus respiration, a copper-dependent process. Thus, we conclude that the antibacterial effect of microplusin is due to its ability to bind and sequester copper II.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Copper/chemistry , Protein Structure, Secondary , Rhipicephalus/chemistry , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Bacteria/drug effects , Binding Sites , Cattle , Circular Dichroism , Humans , Microbial Sensitivity Tests , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Oxygen Consumption , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...