Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(49): 44631-44642, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530317

ABSTRACT

Poly(amide-triazole) and poly(ester-triazole) synthesized from d-galactose as a renewable resource were applied for the synthesis of nanoparticles (NPs) by the emulsification/solvent evaporation method. The NPs were characterized as stable, spherical particles, and none of their components, including the stabilizer poly(vinyl alcohol), were cytotoxic for normal rat kidney cells. These NPs proved to be useful for the efficient encapsulation of cilostazol (CLZ), an antiplatelet and vasodilator drug currently used for the treatment of intermittent claudication, which is associated with undesired side-effects. In this context, the nanoencapsulation of CLZ was expected to improve its therapeutic administration. The carbohydrate-derived polymeric NPs were designed taking into account that the triazole rings of the polymer backbone could have attractive interactions with the tetrazole ring of CLZ. The activity of the nanoencapsulated CLZ was measured using a matrix metalloproteinase model in a lipopolysaccharide-induced inflammation system. Interestingly, the encapsulated drug exhibited enhanced anti-inflammatory activity in comparison with the free drug. The results are very promising since the stable, noncytotoxic NP systems efficiently reduced the inflammation response at low CLZ doses. In summary, the NPs were obtained through an innovative methodology that combines a carbohydrate-derived synthetic polymer, designed to interact with the drug, ease of preparation, adequate biological performance, and environmentally friendly production.

2.
Curr Microbiol ; 79(9): 261, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35852662

ABSTRACT

Plant pathogens, such as fungi, bacteria, and viruses, can cause serious damage to crops and significantly reduce yield and quality. Bacterial diseases of agronomic crops, however, have been little studied. The present study aims to isolate and identify bacteria recovered from symptomatic maize (Zea mays) leaves collected from field samples in the province of Cordoba, Argentina. Bacterial strains were identified using whole-cell matrix-assisted laser-desorption-ionization-time-off light mass spectrometry and 16S rDNA sequencing. Members of the genera Exiguobacterium and Curtobacterium were dominant in the studied vegetal material. Two strains (RC18-1/2 and RC18-3/1) were selected for further studies. The pathogenicity test showed that plants inoculated with Curtobacterium sp. RC18-1/2 exhibited the same symptoms as those previously detected in the field. To our knowledge, this study provides the first evidence about the isolation of a Curtobacterium pathogenic strain in maize. Effective crop disease management will require the use of integrated strategies, such as resistant cultivars and/or biocontrol agents.


Subject(s)
Actinomycetales , Zea mays , Actinomycetales/genetics , Argentina , Bacteria , DNA, Ribosomal/genetics , Fungi/genetics , Plants , Zea mays/microbiology
3.
Mikrochim Acta ; 189(5): 174, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35366715

ABSTRACT

A label-free molecular imprinted polymer (MIP) sensor was fabricated for the detection of progesterone in aqueous solutions, by polymerization inside the void spaces of colloidal crystals, which gave them photonic properties. The prepolymerization mixture was prepared from acrylic acid as the functional monomer, ethylene glycol as the cross-linker agent, ethanol as solvent, and progesterone as the imprinted template. After polymerization, the colloidal crystal was removed by acid etching and the target eluted with a solvent. Material characterization included as follows: attenuated total reflectance-Fourier-transform infrared spectroscopy, dynamic light scattering, swelling experiments, and environmental scanning electron microscopy. MIPs were investigated by equilibrium binding, kinetics experiments, and UV-visible spectra to investigate Bragg diffraction peak shift that occurs with the rebinding at different progesterone concentrations in deionized water and 150-mM NaCl solutions. The MIP response was investigated with progesterone concentration in the 1-100 µg L-1 range, with LOD of 0.5 µg L-1, reaching the detected range of hormone in natural waters. Furthermore, hydrogel MIP films were successfully tested in various real water matrices with satisfactory results. Moreover, the MIP film exhibited good selectivity toward the progesterone hormone evidenced by a larger response than when exposed to structurally similar molecules. Computational studies suggested that size along with surface potential influenced the binding of analog compounds. Due to their ease of use and low cost, the sensors are promising as screening tools for the presence of progesterone in aqueous samples.


Subject(s)
Molecular Imprinting , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Polymers/chemistry , Progesterone , Water
4.
Mikrochim Acta ; 188(3): 70, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547550

ABSTRACT

A photonic sensor based on inversed opal molecular imprinted polymer (MIP) film to detect the presence of chlorantraniliprole (CHL) residue in tomatoes was developed. Acrylic acid was polymerized in the presence of CHL inside the structure of a colloidal crystal, followed by etching of the colloids and CHL elution. Colloidal crystals and MIP films were characterized by scanning electron microscopy and FT-IR, confirming the inner structure and chemical structure of the material. MIP films supported on polymethylmethacrylate (PMMA) slides were incubated in aqueous solutions of the pesticide and in blended tomato samples. The MIP sensor displayed shifts of the peak wavelength of the reflection spectra in the visible range when incubated in CHL concentrations between 0.5 and 10 µg L-1, while almost no peak displacement was observed for non-imprinted (NIP) films. Whole tomatoes were blended into a liquid and spiked with CHL; the sensor was able to detect CHL residues down to 0.5 µg kg-1, significantly below the tolerance level established by the US Environmental Protection Agency of 1.4 mg kg-1. Stable values were reached after about 30-min incubation in test samples. Control samples (unspiked processed tomatoes) produced peak shifts both in MIP and NIP films; however, this matrix effect did not affect the detection of CHL in the spiked samples. These promising results support the application of photonic MIP sensors as an economical and field-deployable screening tool for the detection of CHL in crops.


Subject(s)
Molecularly Imprinted Polymers/chemistry , Pesticide Residues/analysis , ortho-Aminobenzoates/analysis , Acrylic Resins/chemistry , Limit of Detection , Solanum lycopersicum/chemistry , Porosity , Silicon Dioxide/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...