Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(24): 43417-43425, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523039

ABSTRACT

We report the photoacoustic (PA) response in the terahertz (THz) range by employing a detection process actuated with a silicon cantilever pressure sensor and a carbon-based radiation absorber. The detection relies on the mechanical response of the cantilever, when the volume of the carrier gas inside the PA cell expands with the heat produced by the radiation absorber. The detector interferometrically monitors the movement of the cantilever sensor to generate the PA signal. We selected the absorber material with the highest THz responsivity for detailed studies at 1.4 THz (214 µm wavelength). The observed responsivities of two different radiation absorbers are nearly the same at 1.4 THz and agree within 10% with responsivity values at 0.633 µm wavelength. The results demonstrate the potential of covering with a single PA detector a broad spectral range with approximately constant responsivity, large dynamic range, and high damage threshold.

2.
Opt Lett ; 47(7): 1689-1692, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363719

ABSTRACT

Optical power measurements are needed in practically all technologies based on light. Here, we report a general-purpose optical power detector based on the photoacoustic effect. Optical power incident on the detector's black absorber produces an acoustic signal, which is further converted into an electrical signal using a silicon-cantilever pressure transducer. We demonstrate an exceptionally large spectral coverage from ultraviolet to far infrared, with the possibility for further extension to the terahertz region. The linear dynamic range of the detector reaches 80 dB, ranging from a noise-equivalent power of 6 n W/H z to 600 mW (independent of signal averaging time).

3.
Photoacoustics ; 23: 100265, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34094850

ABSTRACT

We present an experimental comparison of photoacoustic responsivities of common highly absorbing carbon-based materials. The comparison was carried out with parameters relevant for photoacoustic power detectors and Fourier-transform infrared (FTIR) spectroscopy: we covered a broad wavelength range from the visible red to far infrared (633 nm to 25 µm) and the regime of low acoustic frequencies (< 1 kHz). The investigated materials include a candle soot-based coating, a black paint coating and two different carbon nanotube coatings. Of these, the low-cost soot absorber produced clearly the highest photoacoustic response over the entire measurement range.

4.
Appl Spectrosc ; 68(2): 179-84, 2014.
Article in English | MEDLINE | ID: mdl-24480273

ABSTRACT

A quantitative and simultaneous measurement of K, KCl, and KOH vapors from a burning fuel sample combusted in a single particle reactor was performed using collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) with a time resolution of 0.2 s. The previously presented CPFAAS technique was extended in this work to cover two consecutive fragmentation pulses for the photofragmentation of KCl and KOH. The spectral overlapping of the fragmentation spectra of KCl and KOH is discussed, and a linear equation system for the correction of the spectral interference is introduced. The detection limits for KCl, KOH, and K with the presented measurement arrangement and with 1 cm sample length were 0.5, 0.1, and 0.001 parts per million, respectively. The experimental setup was applied to analyze K, KCl, and KOH release from 10 mg spruce bark samples combusted at the temperatures of 850, 950, and 1050 °C with 10% of O2. The combustion experiments provided data on the form of K vapors and their release during different combustion phases and at different temperatures. The measured release histories agreed with earlier studies of K release. The simultaneous direct measurement of atomic K, KCl, and KOH will help in the impact of both the form of K in the biomass and fuel variables, such as particle size, on the release of K from biomass fuels.


Subject(s)
Biomass , Gases/analysis , Hydroxides/analysis , Potassium Chloride/analysis , Potassium Compounds/analysis , Potassium/analysis , Biofuels , Hot Temperature , Picea/chemistry , Plant Bark/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...