Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955534

ABSTRACT

A key aspect of cytokine-induced changes as observed in sepsis is the dysregulated activation of endothelial cells (ECs), initiating a cascade of inflammatory signaling leading to leukocyte adhesion/migration and organ damage. The therapeutic targeting of ECs has been hampered by concerns regarding organ-specific EC heterogeneity and their response to inflammation. Using in vitro and in silico analysis, we present a comprehensive analysis of the proteomic changes in mouse lung, liver and kidney ECs following exposure to a clinically relevant cocktail of proinflammatory cytokines. Mouse lung, liver and kidney ECs were incubated with TNF-α/IL-1ß/IFN-γ for 4 or 24 h to model the cytokine-induced changes. Quantitative label-free global proteomics and bioinformatic analysis performed on the ECs provide a molecular framework for the EC response to inflammatory stimuli over time and organ-specific differences. Gene Ontology and PANTHER analysis suggest why some organs are more susceptible to inflammation early on, and show that, as inflammation progresses, some protein expression patterns become more uniform while additional organ-specific proteins are expressed. These findings provide an in-depth understanding of the molecular changes involved in the EC response to inflammation and can support the development of drugs targeting ECs within different organs. Data are available via ProteomeXchange (identifier PXD031804).


Subject(s)
Endothelial Cells , Vascular Diseases , Animals , Cytokines/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Inflammation/metabolism , Mice , Proteomics , Tumor Necrosis Factor-alpha/metabolism , Vascular Diseases/metabolism
2.
Vasc Biol ; 4(1): R15-R34, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35515704

ABSTRACT

During sepsis, defined as life-threatening organ dysfunction due to dysregulated host response to infection, systemic inflammation activates endothelial cells and initiates a multifaceted cascade of pro-inflammatory signaling events, resulting in increased permeability and excessive recruitment of leukocytes. Vascular endothelial cells share many common properties but have organ-specific phenotypes with unique structure and function. Thus, therapies directed against endothelial cell phenotypes are needed to address organ-specific endothelial cell dysfunction. Omics allow for the study of expressed genes, proteins and/or metabolites in biological systems and provide insight on temporal and spatial evolution of signals during normal and diseased conditions. Proteomics quantifies protein expression, identifies protein-protein interactions and can reveal mechanistic changes in endothelial cells that would not be possible to study via reductionist methods alone. In this review, we provide an overview of how sepsis pathophysiology impacts omics with a focus on proteomic analysis of mouse endothelial cells during sepsis/inflammation and its relationship with the more clinically relevant omics of human endothelial cells. We discuss how omics has been used to define septic endotype signatures in different populations with a focus on proteomic analysis in organ-specific microvascular endothelial cells during sepsis or septic-like inflammation. We believe that studies defining septic endotypes based on proteomic expression in endothelial cell phenotypes are urgently needed to complement omic profiling of whole blood and better define sepsis subphenotypes. Lastly, we provide a discussion of how in silico modeling can be used to leverage the large volume of omics data to map response pathways in sepsis.

3.
Genes Dis ; 2(3): 268-275, 2015 Sep.
Article in English | MEDLINE | ID: mdl-30258869

ABSTRACT

Critical-sized craniofacial defect repair represents a significant challenge to reconstructive surgeons. Many strategies have been employed in an effort to achieve both a functionally and cosmetically acceptable outcome. Bone morphogenetic proteins (BMPs) provide a robust osteoinductive cue to stimulate bony growth and remodeling. Previous studies have suggested that the BMP-9 isoform is particularly effective in promoting osteogenic differentiation of mesenchymal progenitor cells. The aim of this study is to characterize the osteogenic capacity of BMP-9 on calvarial mesenchymal progenitor cell differentiation. Reversibly immortalized murine calvarial progenitor cells (iCALs) were infected with adenoviral vectors encoding BMP-9 or GFP and assessed for early and late stages of osteogenic differentiation in vitro and for osteogenic differentiation via in vivo stem cell implantation studies. Significant elevations in alkaline phosphatase (ALP) activity, osteocalcin (OCN) mRNA transcription, osteopontin (OPN) protein expression, and matrix mineralization were detected in BMP-treated cells compared to control. Specifically, ALP activity was elevated on days 3, 7, 9, 11, and 13 post-infection and OCN mRNA expression was elevated on days 8, 10, and 14 in treated cells. Additionally, treatment groups demonstrated increased OPN protein expression on day 10 and matrix mineralization on day 14 post-infection relative to control groups. BMP-9 also facilitated the formation of new bone in vivo as detailed by gross, microcomputed tomography, and histological analyses. Therefore, we concluded that BMP-9 significantly stimulates osteogenic differentiation in iCALs, and should be considered an effective agent for calvarial tissue regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...