Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
2.
Biomedicines ; 11(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38002091

ABSTRACT

The neem tree, Azadirachta indica, belongs to the Meliaceae family, and its use in the treatment of medical disorders from ancient times to the present in the traditional medical practices of Asia, Africa and the Middle East is well-documented. Neem oil, extracted from the seeds of the fruit, is widely used, with promising medicinal benefits. Azadiradione, a principal antioxidant component of the seeds of A. indica, is known to reduce oxidative stress and has anti-inflammatory effects. To directly measure the antioxidant ability of neem oil, we used Rotating Ring Disk Electrode (RRDE) hydrodynamic voltammetry to quantify how it can scavenge superoxide radical anions. The results of these experiments show that neem oil is approximately 26 times stronger than other natural products, such as olive oil, propolis and black seed oil, which were previously measured using this method. Next, computational Density Functional Theory (DFT) methods were used to arrive at a mechanism for the scavenging of superoxide radical anions with azadiradione. Our work indicates that azadiradione is an effective antioxidant and, according to our DFT study, its scavenging of the superoxide radical anion occurs through a reaction mechanism in which azadiradione mimics the antioxidant action of superoxide dismutase (SOD). In this mechanism, analogous to the SOD enzymatic reaction, azadiradione is regenerated, along with the production of two products: hydrogen peroxide and molecular oxygen. This antioxidant process provides an explanation for azadiradione's more general and protective biochemical effects.

3.
Molecules ; 28(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38005258

ABSTRACT

Photodynamic therapy (PDT) is an anticancer/antibacterial strategy in which photosensitizers (PSs), light, and molecular oxygen generate reactive oxygen species and induce cell death. PDT presents greater selectivity towards tumor cells than conventional chemotherapy; however, PSs have limitations that have prompted the search for new molecules featuring more favorable chemical-physical characteristics. Curcumin and its derivatives have been used in PDT. However, low water solubility, rapid metabolism, interference with other drugs, and low stability limit curcumin use. Chemical modifications have been proposed to improve curcumin activity, and metal-based PSs, especially ruthenium(II) complexes, have attracted considerable attention. This study aimed to characterize six Ru(II)-arene curcuminoids for anticancer and/or antibacterial PDT. The hydrophilicity, photodegradation rates, and singlet oxygen generation of the compounds were evaluated. The photodynamic effects on human colorectal cancer cell lines were also assessed, along with the ability of the compounds to induce ROS production, apoptotic, necrotic, and/or autophagic cell death. Overall, our encouraging results indicate that the Ru(II)-arene curcuminoid derivatives are worthy of further investigation and could represent an interesting option for cancer PDT. Additionally, the lack of significant in vivo toxicity on the larvae of Galleria mellonella is an important finding. Finally, the photoantimicrobial activity of HCurc I against Gram-positive bacteria is indeed promising.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Curcumin , Photochemotherapy , Ruthenium , Humans , Photosensitizing Agents/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , Curcumin/pharmacology , Diarylheptanoids , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
4.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445927

ABSTRACT

The relationship between oxidative stress and inflammation is well known, and exogenous antioxidants, primarily phytochemical natural products, may assist the body's endogenous defense systems in preventing diseases due to excessive inflammation. In this study, we evaluated the antioxidant properties of ethnomedicines from Peru that exhibit anti-inflammatory activity by measuring the superoxide scavenging activity of ethanol extracts of Maytenus octogona aerial parts using hydrodynamic voltammetry at a rotating ring-disk electrode (RRDE). The chemical compositions of these extracts are known and the interactions of three methide-quinone compounds found in Maytenus octogona with caspase-1 were analyzed using computational docking studies. Caspase-1 is a critical enzyme triggered during the activation of the inflammasome and its actions are associated with excessive release of cytokines. The most important amino acid involved in active site caspase-1 inhibition is Arg341 and, through docking calculations, we see that this amino acid is stabilized by interactions with the three potential methide-quinone Maytenus octogona inhibitors, hydroxytingenone, tingenone, and pristimerin. These findings were also confirmed after more rigorous molecular dynamics calculations. It is worth noting that, in these three compounds, the methide-quinone carbonyl oxygen is the preferred hydrogen bond acceptor site, although tingenone's other carbonyl group also shows a similar binding energy preference. The results of these calculations and cyclovoltammetry studies support the effectiveness and use of anti-inflammatory ethnopharmacological ethanol extract of Maytenus octogona (L'Héritier) DC.


Subject(s)
Maytenus , Superoxides , Maytenus/chemistry , Caspase 1 , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Quinones , Anti-Inflammatory Agents/pharmacology , Inflammation , Ethanol
5.
Antioxidants (Basel) ; 12(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36978853

ABSTRACT

Black cumin seeds and seed oil have long been used in traditional foods and medicine in South Asian, Middle Eastern and Mediterranean countries and are valuable flavor ingredients. An important ingredient of black cumin is the small molecule thymoquinone (TQ), which manifests low toxicity and potential therapeutic activity against a wide number of diseases including diabetes, cancer and neurodegenerative disorders. In this study, the antioxidant activities of black seed oil, TQ and a related molecule found in black cumin, thymohydroquinone (THQ), were measured using a direct electrochemical method to experimentally evaluate their superoxide scavenging action. TQ and the black seed oil showed good superoxide scavenging ability, while THQ did not. Density Functional Theory (DFT) computational methods were applied to arrive at a chemical mechanism describing these results, and confirmed the experimental Rotating Ring Disk Electrode (RRDE) findings that superoxide oxidation to O2 by TQ is feasible, in contrast with THQ, which does not scavenge superoxide. Additionally, a thorough inquiry into the unusual cyclic voltammetry pattern exhibited by TQ was studied and was associated with formation of a 1:1 TQ-superoxide radical species, [TQ-O2]-•. DFT calculations reveal this radical species to be involved in the π-π mechanism describing TQ reactivity with superoxide. The crystal structures of TQ and THQ were analyzed, and the experimental data reveal the presence of stacking intermolecular interactions that can be associated with formation of the radical species, [TQ-O2]-•. All three of these methods were essential for us to arrive at a chemical mechanism that explains TQ antioxidant activity, that incorporates intermolecular features found in the crystal structure and which correlates with the measured superoxide scavenging activity.

6.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835226

ABSTRACT

Isoflavones are plant-derived natural products commonly found in legumes that show a large spectrum of biomedical activities. A common antidiabetic remedy in traditional Chinese medicine, Astragalus trimestris L. contains the isoflavone formononetin (FMNT). Literature reports show that FMNT can increase insulin sensitivity and potentially target the peroxisome proliferator-activated receptor gamma, PPARγ, as a partial agonist. PPARγ is highly relevant for diabetes control and plays a major role in Type 2 diabetes mellitus development. In this study, we evaluate the biological role of FMNT, and three related isoflavones, genistein, daidzein and biochanin A, using several computational and experimental procedures. Our results reveal the FMNT X-ray crystal structure has strong intermolecular hydrogen bonding and stacking interactions which are useful for antioxidant action. Cyclovoltammetry rotating ring disk electrode (RRDE) measurements show that all four isoflavones behave in a similar manner when scavenging the superoxide radical. DFT calculations conclude that antioxidant activity is based on the familiar superoxide σ-scavenging mode involving hydrogen capture of ring-A H7(hydroxyl) as well as the π-π (polyphenol-superoxide) scavenging activity. These results suggest the possibility of their mimicking superoxide dismutase (SOD) action and help explain the ability of natural polyphenols to assist in lowering superoxide concentrations. The SOD metalloenzymes all dismutate O2•- to H2O2 plus O2 through metal ion redox chemistry whereas these polyphenolic compounds do so through suitable hydrogen bonding and stacking intermolecular interactions. Additionally, docking calculations suggest FMNT can be a partial agonist of the PPARγ domain. Overall, our work confirms the efficacy in combining multidisciplinary approaches to provide insight into the mechanism of action of small molecule polyphenol antioxidants. Our findings promote the further exploration of other natural products, including those known to be effective in traditional Chinese medicine for potential drug design in diabetes research.


Subject(s)
Biological Products , Isoflavones , Superoxide Dismutase , Humans , Antioxidants/chemistry , Biological Products/chemistry , Diabetes Mellitus, Type 2 , Hydrogen Peroxide , Isoflavones/chemistry , PPAR gamma/chemistry , Superoxide Dismutase/chemistry , Superoxides/chemistry
7.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38256900

ABSTRACT

Pimpinella anisum L., or anise, is a plant that, besides its nutritional value, has been used in traditional medical practices and described in many cultures in the Mediterranean region. A possible reason for anise's therapeutic value is that it contains coumarins, which are known to have many biomedical and antioxidant properties. HPLC analysis in our laboratory of the anise extract shows the presence of the coumarin esculetin. We used a hydrodynamic voltammetry rotating ring-disk electrode (RRDE) method to measure the superoxide scavenging abilities of anise seeds and esculetin, which has marked scavenging activity. A related coumarin, 4-methyl-esculetin, also showed strong antioxidant activity as measured by RRDE. Moreover, this study includes the X-ray crystal structure of esculetin and 4-methyl-esculetin, which reveal the H-bond and the stacking intermolecular interactions of the two coumarins. Coordinates of esculetin crystal structure were used to perform a DFT study to arrive at the mechanism of superoxide scavenging. Besides performing a H(hydroxyl) abstraction in esculetin position 6 by superoxide, the scavenging also includes the presence of a second superoxide radical in a π-π approach. Both rings of esculetin were explored for this attack, but only the pyrone ring was effective. As a result, one product of esculetin scavenging is H2O2 formation, while the second superoxide remains π-π trapped within the pyrone ring to form an esculetin-η-O2 complex. Comparison with other coumarins shows that subtle structural differences in the coumarin framework can imply marked differences in scavenging. For instance, when the catechol moiety of esculetin (position 6,7) is shifted to position 7,8 in 4-methyl-7,8-dihydroxy coumarin, that coumarin shows a superoxide dismutase action, which, beside H2O2 formation, includes the formation and elimination of a molecule of O2. This is in contrast with the products formed through esculetin superoxide scavenging, where a second added superoxide remains trapped, and forms an esculetin-η-O2 complex.

8.
Curr Issues Mol Biol ; 44(11): 5209-5220, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36354666

ABSTRACT

Polyphenols are valuable natural antioxidants present in our diet that likely mitigate aging effects, neurodegenerative conditions, and other diseases. However, because of their poor absorption in the gut and consequent low concentration in biological fluids (µM range), reservations about polyphenol antioxidant efficiency have been raised. In this review, it is shown that after scavenging superoxide radicals, coumarin, chalcone, and flavonoid polyphenols can reform themselves, becoming ready for additional cycles of scavenging, similar to the catalytic cycle in superoxide dismutase (SOD) action. The π-π interaction between one polyphenol ring and superoxide is associated with oxidation of the latter due to transfer of its unpaired electron to a polyphenolic aromatic ring, and consequent formation of a molecule of O2 (one product of SOD action). Mechanistically, it is very difficult to establish if this π-π interaction proceeds before or after the most common mode of scavenging superoxide, e.g., abstraction of an aromatic polyphenol H(hydroxyl), which then is used to form H2O2 (the other molecule produced by SOD action). At the end of this cycle of superoxide scavenging, 4-methyl-7,8-di-hydroxy-coumarin and the flavonoid galangin reform themselves. An alternative mechanistic pathway by galangin forms the η-(H2O2)-galangin-η-O2 complex that includes additional H2O2 and O2 molecules. Another mode of action is seen with the chalcone butein, in which the polyphenol system incorporates a molecule of O2, e.g., a η-O2-butein complex is formed, ready for additional scavenging. Of the several families of polyphenols analyzed in this review, only butein was able to circumvent an initial π-π interaction, directing the superoxide towards H(hydroxyl) in position 4, e.g., acting as a typical polyphenol scavenger of superoxide. This fact did not impede an additional superoxide to later react with the aromatic ring in π-π fashion. It is concluded that by mimicking SOD enzyme action, the low concentration of polyphenols in biological fluids is not a limiting factor for effective scavenging of superoxide.

9.
Front Endocrinol (Lausanne) ; 13: 961744, 2022.
Article in English | MEDLINE | ID: mdl-36213288

ABSTRACT

Thyroid hormones, T3 (triiodothyronine) and T4 (thyroxine), induce a variety of long-term effects on important physiological functions, ranging from development and growth to metabolism regulation, by interacting with specific nuclear or cytosolic receptors. Extranuclear or nongenomic effects of thyroid hormones are mediated by plasma membrane or cytoplasmic receptors, mainly by αvß3 integrin, and are independent of protein synthesis. A wide variety of nongenomic effects have now been recognized to be elicited through the binding of thyroid hormones to this receptor, which is mainly involved in angiogenesis, as well as in cell cancer proliferation. Several signal transduction pathways are modulated by thyroid hormone binding to αvß3 integrin: protein kinase C, protein kinase A, Src, or mitogen-activated kinases. Thyroid hormone-activated nongenomic effects are also involved in the regulation of Na+-dependent transport systems, such as glucose uptake, Na+/K+-ATPase, Na+/H+ exchanger, and amino acid transport System A. Of note, the modulation of these transport systems is cell-type and developmental stage-dependent. In particular, dysregulation of Na+/K+-ATPase activity is involved in several pathological situations, from viral infection to cancer. Therefore, this transport system represents a promising pharmacological tool in these pathologies.


Subject(s)
Neoplasms , Triiodothyronine , Adenosine Triphosphatases/metabolism , Amino Acid Transport System A , Cyclic AMP-Dependent Protein Kinases/metabolism , Glucose , Humans , Integrins/metabolism , Mitogens , Neoplasms/metabolism , Protein Kinase C/metabolism , Thyroid Hormones/metabolism , Thyroxine/metabolism , Triiodothyronine/physiology
10.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077005

ABSTRACT

The unprecedented COVID-19 pandemic showed up during the latter part of 2019 in Wuhan, China [...].


Subject(s)
COVID-19 , China/epidemiology , Humans , Pandemics , SARS-CoV-2
11.
PLoS One ; 17(5): e0267624, 2022.
Article in English | MEDLINE | ID: mdl-35584109

ABSTRACT

Propolis is produced by honeybees and used to seal their hives for defensive purposes and has been used in ethnopharmacology since ancient times. It is a lipophilic material containing a large collection of naturally produced plant organic molecules, including flavonoids. The flavonoid galangin is consistently found in propolis, independent of the hive geographical location and its X-ray crystal and molecular structure is reported. The antioxidant scavenging of superoxide by galangin and propolis is here presented. Using a cyclic voltammetry technique developed in our lab, we show that galangin is an excellent scavenger of the superoxide radical, perhaps even better than quercetin. Our results show that galangin displays a Superoxide Dismutase (SOD) function. This is described experimentally and theoretically (DFT). Two modes of scavenging superoxide are seen for galangin: (1) superoxide radical extraction of H atom from the hydroxyl moieties located in position 3 and 5 of galangin, which are also associated with proton incorporation defining the SOD action; (2) π-π interaction among several superoxide radicals and the galangin polyphenol ring that evolve towards release of O2 and H2O2. We describe these two actions separately as their relative sequence, and/or combination, cannot be defined; all these processes are thermodynamically spontaneous, or subjected to mild barriers.


Subject(s)
Propolis , Animals , Antioxidants/pharmacology , Flavonoids/pharmacology , Hydrodynamics , Hydrogen Peroxide , Propolis/chemistry , Superoxide Dismutase , Superoxides , X-Rays
12.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35163769

ABSTRACT

The inflammatory protease caspase-1 is associated with the release of cytokines. An excessive number of cytokines (a "cytokine storm") is a dangerous consequence of COVID-19 infection and has been indicated as being among the causes of death by COVID-19. The anti-inflammatory drug colchicine (which is reported in the literature to be a caspase-1 inhibitor) and the corticosteroid drugs, dexamethasone and methylprednisolone, are among the most effective active compounds for COVID-19 treatment. The SERM raloxifene has also been used as a repurposed drug in COVID-19 therapy. In this study, inhibition of caspase-1 by these four compounds was analyzed using computational methods. Our aim was to see if the inhibition of caspase-1, an important biomolecule in the inflammatory response that triggers cytokine release, could shed light on how these drugs help to alleviate excessive cytokine production. We also measured the antioxidant activities of dexamethasone and colchicine when scavenging the superoxide radical using cyclic voltammetry methods. The experimental findings are associated with caspase-1 active site affinity towards these compounds. In evaluating our computational and experimental results, we here formulate a mechanism for caspase-1 inhibition by these drugs, which involves the active site amino acid Cys285 residue and is mediated by a transfer of protons, involving His237 and Ser339. It is proposed that the molecular moiety targeted by all of these drugs is a carbonyl group which establishes a S(Cys285)-C(carbonyl) covalent bond.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19 Drug Treatment , Caspase 1/drug effects , Caspase Inhibitors/pharmacology , Coronavirus 3C Proteases/drug effects , Anti-Inflammatory Agents/chemistry , COVID-19/metabolism , Caspase 1/chemistry , Caspase 1/metabolism , Caspase Inhibitors/chemistry , Colchicine/chemistry , Colchicine/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Dexamethasone/pharmacology , Humans , Models, Molecular , Molecular Docking Simulation , Pentacyclic Triterpenes/pharmacology , Protein Interaction Domains and Motifs , Raloxifene Hydrochloride/chemistry , Raloxifene Hydrochloride/pharmacology , Viral Protease Inhibitors/chemistry , Viral Protease Inhibitors/pharmacology
13.
Molecules ; 26(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34770920

ABSTRACT

Malaria is a huge global health burden with resistance to currently available medicines resulting in the search for newer antimalarial compounds from traditional medicinal plants in malaria-endemic regions. Previous studies on two chalcones, homobutein and 5-prenylbutein, present in E. abyssinica, have shown moderate antiplasmodial activity. Here, we describe results from experimental and computational investigations of four structurally related chalcones, butein, 2',4'-dihydroxy-3,4-dimethoxychalcone (DHDM), homobutein and 5-prenylbutein to elucidate possible molecular mechanisms by which these compounds clear malaria parasites. The crystal structures of butein and DHDM show that butein engages in more hydrogen bonding and consequently, more intermolecular interactions than DHDM. Rotating ring-disk electrode (RRDE) voltammetry results show that butein has a higher antioxidant activity towards the superoxide radical anion compared to DHDM. Computational docking experiments were conducted to examine the inhibitory potential of all four compounds on falcipain-2, a cysteine protease that is involved in the degradation of hemoglobin in plasmodium-infected red blood cells of the host. Overall, this work suggests butein as a better antimalarial compound due to its structural features which allow it to have greater intermolecular interactions, higher antioxidant activity and to create a covalent complex at the active site of falcipain-2.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Binding Sites , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Dose-Response Relationship, Drug , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship
14.
Microorganisms ; 9(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669814

ABSTRACT

Herpes simplex virus-1 (HSV-1) causes a wide range of infections from mild to life-threatening in the human population. There are effective treatments for HSV-1 infections that are limited due HSV-1 latency and development of resistance to current therapeutics. The goal of this study was to investigate the antioxidant and antiviral effects of embelin on HSV-1 in cultured Vero cells. Oxidative stress was verified by an extensive production of a reactive oxygen species (ROS) H2O2. Vero cells were infected with a recombinant strain of HSV-1 and antiviral assays, time course attachment, penetration, and post penetration assays, confocal microscopy, qPCR, and antioxidant assays were conducted. Our results lead to the conclusion that embelin is noncytotoxic at concentrations tested ranging from 20 to 70 µM. Treatment of HSV-1 virions with embelin resulted in 98.7-100% inhibition and affected the early stage of HSV-1 infection of Vero cells, by inhibiting the attachment and penetration of HSV-1 virions to host cells. Treatment of virions with concentrations of embelin ranging from 35 to 60 µM significantly reduced the production of H2O2. In conclusion, embelin reduces oxidative damage caused by HSV-1 infection and is an effective antiviral to reduce the infection of HSV-1 in cultured Vero cells. Further studies are needed to explore the possibility of embelin as a medicinal agent.

15.
Food Chem ; 341(Pt 2): 128260, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33039740

ABSTRACT

Clovamide (trans-clovamide, (2S)-3-(3,4-dihydroxyphenyl)-2-[[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]amino]propanoic acid) is a naturally occurring caffeoyl conjugate and a potent antioxidant found in the phenolic fraction of Theobroma Cacao L. beans. This work quantified clovamide content in single-origin cocoa beans at different production stages (raw, roasted, and winnowed side and end products) by high-performance liquid chromatography with diode array detector (HPLC-DAD). We analyzed the antioxidant activities of clovamide and these extracts by measuring their superoxide radical scavenging capabilities in a Rotating Ring-Disk Electrode (RRDE) electrochemical system against in-situ generated superoxide radical. Our studies concluded a positive correlation between clovamide concentration and the overall antioxidant activities of beans, with the roasting step showing a reduction effect on both. The subsequent refining steps recover the clovamide concentration. Antioxidant studies on clovamide alone by RRDE and density functional theory (DFT) studies led to the conclusion that it is a powerful oxygen radical scavenger, partially contributed by its molecular catechol moieties.


Subject(s)
Antioxidants/chemistry , Cacao/chemistry , Chromatography, High Pressure Liquid/methods , Density Functional Theory , Tyrosine/analogs & derivatives , Cacao/metabolism , Electrochemical Techniques , Hydrodynamics , Phenols/analysis , Seeds/chemistry , Seeds/metabolism , Spectrometry, Mass, Electrospray Ionization , Tyrosine/analysis
16.
Int J Mol Sci ; 21(23)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291769

ABSTRACT

We describe the potential anti coronavirus disease 2019 (COVID-19) action of the methide quinone inhibitor, celastrol. The related methide quinone dexamethasone is, so far, among COVID-19 medications perhaps the most effective drug for patients with severe symptoms. We observe a parallel redox biology behavior between the antioxidant action of celastrol when scavenging the superoxide radical, and the adduct formation of celastrol with the main COVID-19 protease. The related molecular mechanism is envisioned using molecular mechanics and dynamics calculations. It proposes a covalent bond between the S(Cys145) amino acid thiolate and the celastrol A ring, assisted by proton transfers by His164 and His41 amino acids, and a π interaction from Met49 to the celastrol B ring. Specifically, celastrol possesses two moieties that are able to independently scavenge the superoxide radical: the carboxylic framework located at ring E, and the methide-quinone ring A. The latter captures the superoxide electron, releasing molecular oxygen, and is the feature of interest that correlates with the mechanism of COVID-19 inhibition. This unusual scavenging of the superoxide radical is described using density functional theory (DFT) methods, and is supported experimentally by cyclic voltammetry and X-ray diffraction.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Free Radical Scavengers/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Tripterygium/chemistry , Triterpenes/pharmacology , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Free Radical Scavengers/chemistry , Humans , Models, Molecular , Pentacyclic Triterpenes , Plant Roots/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Superoxides/metabolism , Triterpenes/chemistry , COVID-19 Drug Treatment
17.
J Infect Public Health ; 13(12): 1868-1877, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33109497

ABSTRACT

BACKGROUND: Quinones are reactive to proteins containing cysteine residues and the main protease in Covid-19 contains an active site that includes Cys145. Embelin, a quinone natural product, is known to have antiviral activity against influenza and hepatitis B. Preliminary studies by our group also indicate its ability to inhibit HSV-1 in cultured cells. METHODS: Docking and DFT methods applied to the protease target. RESULTS: a mechanism for this inhibition of the SARS-CoV-2 Mpro protease is described, specifically due to formation of a covalent bond between S(Cys145) and an embelin C(carbonyl). This is assisted by two protein amino acids (1) N(imidazole-His41) which is able to capture H[S(Cys145)] and (2) HN(His163), which donates a proton to embelin O(carbonyl) forming an OH moiety that results in inhibition of the viral protease. A similar process is also seen with the anti-inflammatory drugs methyl prednisolone and dexamethasone, used for Covid-19 patients. Methyl prednisolone and dexamethasone are methide quinones, and possess only one carbonyl moiety, instead of two for embelin. Additional consideration was given to another natural product, emodin, recently patented against Covid-19, as well as some therapeutic quinones, vitamin K, suspected to be involved in Covid-19 action, and coenzyme Q10. All show structural similarities with embelin, dexamethasone and methyl prednisolone results. CONCLUSIONS: Our data on embelin and related quinones indicate that these natural compounds may represent a feasible, strategic tool against Covid-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Benzoquinones/pharmacology , Dexamethasone/pharmacology , Drug Repositioning , Humans , Methylprednisolone/pharmacology , Molecular Docking Simulation
18.
Molecules ; 25(14)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664320

ABSTRACT

Coumarins are plant-derived secondary metabolites. The crystal structure of three coumarins-bergamottin, osthole and fraxidin-are described and we analyze intermolecular interactions and their role in crystal formation. Bergamottin is a furanocoumarin found in citrus plants, which is a strong inhibitor of the principal human metabolizing enzyme, cytochrome P450 3A4 (CYP3A4). The crystal structure determinations of three coumarins give us the geometrical parameters and reveal the parallel-displaced π-π stacking and hydrogen bonding intermolecular interactions used for molecular assembly in the crystal structure. A quite strong (less than 3.4 Å) stacking interaction of bergamottin appears to be a determining feature that distinguishes it from other coumarins studied in this work. Our DFT computational studies on the three natural products of the same coumarin family docked into the active site of CYP3A4 (PDB 4D78) show different behavior for these coumarins at the active site. When the substrate is bergamottin, the importance of π-π stacking and hydrogen bonding, which can anchor the substrate in place, appears fundamental. In contrast, fraxidin and osthole show carbonyl coordination to iron. Our docking calculations show that the bergamottin tendency towards π-π stacking is important and likely influences its interactions with the heme group of CYP3A4.


Subject(s)
Citrus paradisi/metabolism , Coumarins/chemistry , Coumarins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Furocoumarins/metabolism , Catalytic Domain/physiology , Citrus paradisi/chemistry , Crystallography, X-Ray/methods , Furocoumarins/chemistry , Heme/chemistry , Heme/metabolism , Humans , Hydrogen Bonding
19.
Antioxidants (Basel) ; 9(5)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380755

ABSTRACT

Embelin, a plant natural product found in Lysimachia punctata (Primulaceae), and Embelia ribes Burm (Myrsinaceae) fruit, possesses interesting biological and pharmacological properties. It is a unique chemical species as it includes both quinone and hydroquinone functional groups plus a long hydrophobic tail. By using hydrodynamic voltammetry, which generates the superoxide radical in situ, we show an unusual scavenging capability by embelin. Embelin as a scavenger of superoxide is stronger than the common food additive antioxidant 2,6-bis(1,1-dimethylethyl)-4-20 methylphenol, (butylated hydroxytoluene, BHT). In fact, embelin is even able to completely abolish the superoxide radical in the voltaic cell. Computational results indicate that two different types of embelin scavenging actions may be involved, initially through π-π interaction and followed by proton capture in the cell. A related mechanism describes embelin's ability to circumvent superoxide leaking by transforming the anion radical into molecular oxygen. In order to confirm its antioxidant properties, its biological activity was tested in a study carried out in THP-1 human leukemic monocytes and BV-2 mice microglia. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, proliferation curves and antioxidant activity by the use of a fluorescent probe showed good antioxidant properties at 24 h. This suggests that embelin's long alkyl C10 tail may be useful for cell membrane insertion which stimulates the antioxidant defense system, and cytoprotection in microglia. In conclusion, embelin could be an interesting pharmacological tool able to decrease the damage associated with metabolic and neurodegenerative diseases.

20.
Antioxidants (Basel) ; 9(3)2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32106621

ABSTRACT

The naturally occurring anthraquinone emodin is found in many plants that have been part of traditional Chinese medicine (TCM) for thousands of years. Recent pharmacological studies suggest that emodin might be a valuable therapeutic option for the treatment of various diseases. We describe the antioxidant effects of emodin on the superoxide radical. Our techniques include X-ray crystallography, density functional theory (DFT), and a recently developed cyclovoltammetry improvement, the rotating ring-disk electrode (RRDE) method. X-ray results show offset π-π stacking of emodin units in the crystal, and this type of interaction is supported by the DFT, which indicates one superoxide interacting via π-π stacking with the quinone moiety, by transferring one electron to the ring, and inducing some quinone aromatization. The second superoxide seems to form a stable complex after interacting with the H(hydroxyl) in position 3 of emodin. We show that one molecule of emodin sequesters two molecules of superoxide: one forming a complex with H(hydroxyl) in position 3, and the other due to π-π oxidation of superoxide and emodin ring reduction. We conclude that emodin is a very strong antioxidant. Color variation in the voltaic cell was observed during the RRDE study. This was analyzed and explained using a mini-grid gold electrode for UV-Vis spectroscopy in the voltaic cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...