Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Soft Matter ; 6: 4788-4799, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-23908673

ABSTRACT

Many cell types have the ability to move themselves by crawling on extra-cellular matrices. Although cell motility is governed by actin and myosin filament assembly, the pattern of the movement follows the physical properties of the network ensemble average. The first step of motility, cell spreading on matrix substrates, involves a transition from round cells in suspension to polarized cells on substrates. Here we show that the spreading dynamics on 2D surfaces can be described as a hydrodynamic process. In particular, we show that the transition from isotropic spreading at early time to anisotropic spreading is reminiscent of the fingering instability observed in many spreading fluids. During cell spreading, the main driving force is the polymerization of actin filaments that push the membrane forward. From the equilibrium between the membrane force and the cytoskeleton, we derive a first order expression of the polymerization stress that reproduces the observed behavior. Our model also allows an interpretation of the effects of pharmacological agents altering the polymerization of actin. In particular we describe the influence of Cytochalasin D on the nucleation of the fingering instability.

2.
Article in English | MEDLINE | ID: mdl-20526428

ABSTRACT

We describe a technique for the fabrication of arrays of elastomeric pillars whose top surfaces are treated with selective chemical functionalization to promote cellular adhesion in cellular force transduction experiments. The technique involves the creation of a rigid mold consisting of arrays of circular holes into which a thin layer of Au is deposited while the top surface of the mold and the sidewalls of the holes are protected by a sacrificial layer of Cr. When an elastomer is formed in the mold, the Au adheres to the tops of the molded pillars. This can then be selectively functionalized with a protein that induces cell adhesion, while the rest of the surface is treated with a repellent substance. An additional benefit is that the tops of the pillars can be fluorescently labeled for improved accuracy in force transduction measurements.

3.
Mol Plant Microbe Interact ; 14(5): 629-38, 2001 May.
Article in English | MEDLINE | ID: mdl-11332727

ABSTRACT

Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease on pepper (Capsicum spp.) and tomato (Lycopersicon spp.). Analysis of 17 different Lycopersicon accessions with avrBs4-expressing X. campestris pv. vesicatoria strains identified 15 resistant and two susceptible tomato genotypes. Genetic analysis revealed that AvrBs4 recognition in tomato is governed by a single locus, designated Bs4 (bacterial spot resistance locus no. 4). Amplified fragment length polymorphism and bulked DNA templates from resistant and susceptible plants were used to define a 2.6-cM interval containing the Bs4 locus. A standard tomato mapping population was employed to localize Bs4-linked markers on the short arm of chromosome 5. Investigation of X. campestris pv. vesicatoria hrp mutant strains revealed that AvrBs4 secretion and avirulence activity are hrp dependent. Agrobacterium-based delivery of the avrBs4 gene into tomato triggered a plant response that phenotypically resembled the hypersensitive response induced by avrBs4-expressing X. campestris pv. vesicatoria strains, suggesting symplastic perception of the avirulence protein. Mutations in the avrBs4 C-terminal nuclear localization signals (NLSs) showed that NLSs are dispensable for Bs4-mediated recognition. Our data suggest that tomato Bs4 and pepper Bs3 employ different recognition modes for detection of the highly homologous X. campestris pv. vesicatoria avirulence proteins AvrBs4 and AvrBs3.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Polymorphism, Genetic , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Xanthomonas campestris/pathogenicity , Capsicum/microbiology , Chromosome Mapping , DNA, Plant/genetics , Genetic Predisposition to Disease , Immunity, Innate/genetics , Nucleic Acid Hybridization , Plant Diseases/microbiology , Plant Leaves/microbiology , Plants, Medicinal , Transcription Activator-Like Effectors , Virulence/genetics , Xanthomonas campestris/genetics , Xanthomonas campestris/physiology
4.
Infect Immun ; 69(4): 2092-8, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11254562

ABSTRACT

Previously, we had demonstrated that a Legionella pneumophila prepilin peptidase (pilD) mutant does not produce type IV pili and shows reduced secretion of enzymatic activities. Moreover, it displays a distinct colony morphology and a dramatic reduction in intracellular growth within amoebae and macrophages, two phenotypes that are not exhibited by a pilin (pilE(L)) mutant. To determine whether these pilD-dependent defects were linked to type II secretion, we have constructed two new mutants of L. pneumophila strain 130b. Mutations were introduced into either lspDE, which encodes the type II outer membrane secretin and ATPase, or lspFGHIJK, which encodes the pseudopilins. Unlike the wild-type and pilE(L) strains, both lspDE and lspG mutants showed reduced secretion of six pilD-dependent enzymatic activities; i.e., protease, acid phosphatase, p-nitrophenol phosphorylcholine hydrolase, lipase, phospholipase A, and lysophospholipase A. However, they exhibited a colony morphology different from that of the pilD mutant, suggesting that their surfaces are distinct. The pilD, lspDE, and lspG mutants were similarly and greatly impaired for growth within Hartmannella vermiformis, indicating that the intracellular defect of the peptidase mutant in amoebae is explained by the loss of type II secretion. When assessed for infection of U937 macrophages, both lsp mutants exhibited a 10-fold reduction in intracellular multiplication and a diminished cytopathic effect. Interestingly, the pilD mutant was clearly 100-fold more defective than the type II secretion mutants in U937 cells. These results suggest the existence of a novel pilD-dependent mechanism for promoting L. pneumophila intracellular infection of human cells.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Proteins/physiology , Endopeptidases , Legionella pneumophila/physiology , Humans , Legionella pneumophila/genetics , Macrophages/microbiology , Mutation
5.
Mol Plant Pathol ; 2(5): 287-96, 2001 Sep 01.
Article in English | MEDLINE | ID: mdl-20573017

ABSTRACT

summary The hrp gene cluster of the plant pathogen Xanthomonas campestris pv. vesicatoria (Xcv) encodes a type III secretion system required for the delivery of virulence and avirulence proteins into the plant. Some of these effector proteins, e.g. AvrBs1 and AvrBsT, are recognized by pepper plants carrying corresponding resistance genes, triggering the hypersensitive reaction (HR). In this study, epitope tagged AvrBs1 and AvrBsT proteins were detected in culture supernatants only in the presence of a functional type III apparatus and not in a hrcV mutant, showing that both proteins are secreted by Xcv in an hrp-dependent manner. Expression of both avirulence genes is constitutive and independent of the hrp gene regulators, hrpG and hrpX. Transient expression of avrBs1 and avrBsT in resistant host plants using Agrobacterium tumefaciens-mediated gene transfer resulted in the induction of a specific HR. This indicates that recognition occurs intracellularly, and suggests that during the Xcv infection, AvrBs1 and AvrBsT are translocated from Xcv into the plant cell. We describe a conserved protein motif which is present in the N-terminal region of all known Xcv avirulence proteins and discuss its potential role in translocation into plant cells.

6.
Mol Microbiol ; 38(4): 828-38, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11115117

ABSTRACT

The interaction between the plant pathogen Xanthomonas campestris pv. vesicatoria and its host plants is controlled by hrp genes (hypersensitive reaction and pathogenicity), which encode a type III protein secretion system. Among type III-secreted proteins are avirulence proteins, effectors involved in the induction of plant defence reactions. Using non-polar mutants, we investigated the role of 12 hrp genes in the secretion of the avirulence protein AvrBs3 from X. c. pv. vesicatoria and a heterologous protein, YopE, from Yersinia pseudotuberculosis. Genes conserved among type III secretion systems (hrcQ, hrcR, hrcS and hrcT) as well as non-conserved genes (hrpB1, hrpB2, hrpB4, hrpB5, hrpD5 and hrpD6) were shown to be required for secretion. Protein localization studies using specific antibodies showed that HrpB1 and HrpB4, as well as the putative ATPase HrcN, were mainly found in the soluble fraction of the bacterial cell. In contrast, HrpB2 and HrpF, which is related to NolX of Rhizobium fredii, are secreted into the culture medium in an hrp-dependent manner. As HrpB2, but not HrpF, is essential for type III protein secretion, there might be a hierarchy in the secretion process. We propose that HrpF, which is dispensable for protein secretion but required for AvrBs3 recognition in planta, functions as a translocator of effector proteins into the host cell.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins , Gene Expression Regulation, Bacterial , Plants/microbiology , Repressor Proteins/genetics , Transcription Factors , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity , Chromosome Mapping , Mutation , Virulence/genetics , Xanthomonas campestris/metabolism
7.
Proc Natl Acad Sci U S A ; 97(24): 13324-9, 2000 Nov 21.
Article in English | MEDLINE | ID: mdl-11078519

ABSTRACT

Strains of Xanthomonas campestris pv. vesicatoria (Xcv) carrying avrBs2 are specifically recognized by Bs2 pepper plants, resulting in localized cell death and plant resistance. Agrobacterium-mediated transient expression of the Xcv avrBs2 gene in plant cells results in Bs2-dependent cell death, indicating that the AvrBs2 protein alone is sufficient for the activation of disease resistance-mediated cell death in planta. We now provide evidence that AvrBs2 is secreted from Xcv and that secretion is type III (hrp) dependent. N- and C-terminal deletion analysis of AvrBs2 has identified the effector domain of AvrBs2 recognized by Bs2 pepper plants. By using a truncated Pseudomonas syringae AvrRpt2 effector reporter devoid of type III signal sequences, we have localized the minimal region of AvrBs2 required for type III secretion in Xcv. Furthermore, we have identified the region of AvrBs2 required for both type III secretion and translocation to host plants. The mapping of AvrBs2 sequences sufficient for type III delivery also revealed the presence of a potential mRNA secretion signal.


Subject(s)
Bacterial Proteins/physiology , Capsicum/microbiology , Plants, Medicinal , Xanthomonas campestris/physiology , Xanthomonas campestris/pathogenicity , Agrobacterium tumefaciens/genetics , Arabidopsis/microbiology , Artificial Gene Fusion , Bacterial Proteins/genetics , Frameshift Mutation , Gene Deletion , Gene Transfer Techniques , Mutagenesis , Plant Leaves/microbiology , Polymerase Chain Reaction , Pseudomonas/genetics , RNA, Messenger/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Transcription, Genetic , Xanthomonas campestris/genetics
8.
Pharm Acta Helv ; 74(2-3): 173-9, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10812955

ABSTRACT

In this chapter we summarize some aspects of the structure-functional relationship of the alpha 1a and alpha 1b-adrenergic receptor subtypes related to the receptor activation process as well as the effect of different alpha-blockers on the constitutive activity of the receptor. Molecular modeling of the alpha 1a and alpha 1b-adrenergic receptor subtypes and computational simulation of receptor dynamics were useful to interpret the experimental findings derived from site directed mutagenesis studies.


Subject(s)
Receptors, Adrenergic, alpha-1/drug effects , Animals , Humans , Receptors, Adrenergic, alpha-1/chemistry , Receptors, Adrenergic, alpha-1/metabolism
9.
Mol Plant Pathol ; 1(1): 73-6, 2000 Jan 01.
Article in English | MEDLINE | ID: mdl-20572953

ABSTRACT

Abstract Xanthomonas campestris pv. vesicatoria (Xcv) is the causal agent of bacterial spot disease on pepper and tomato. Pathogenicity on susceptible plants and the induction of the hypersensitive reaction (HR) on resistant plants requires a number of genes, designated hrp, most of which are clustered in a 23-kb chromosomal region. Nine hrp genes encode components of a type III protein secretion apparatus that is conserved in Gram-negative plant and animal pathogenic bacteria. We have recently demonstrated that Xcv secretes proteins into the culture medium in a hrp-dependent manner. Substrates of the Hrp secretion machinery are pathogenicity factors and avirulence proteins, e.g. AvrBs3. The AvrBs3 protein governs recognition, i.e. HR induction, when bacteria infect pepper plants carrying the corresponding resistance gene Bs3. Intriguingly, the AvrBs3 protein contains eukaryotic signatures such as nuclear localization signals (NLS), and has been shown to act inside the plant cell. We postulate that AvrBs3 is transferred into the plant cell via the Hrp type III pathway and that recognition of AvrBs3 takes place in the plant cell nucleus.

10.
J Bacteriol ; 181(21): 6828-31, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10542187

ABSTRACT

hrpG is a key regulatory gene for transcriptional activation of pathogenicity genes (hrp) of Xanthomonas campestris pv. vesicatoria. We identified three mutations in hrpG which render hrp gene expression constitutive in normally suppressing medium. The mutations in hrpG result in novel amino acid substitutions compared to mutations in related proteins, such as OmpR. In addition, mutated hrpG enhances the timing and intensity of plant reactions in infection assays.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Mutation , Plant Diseases/microbiology , Transcription Factors , Xanthomonas campestris/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Genes, Regulator , Molecular Sequence Data , Plant Leaves/microbiology , Plants, Toxic , Nicotiana/microbiology , Xanthomonas campestris/metabolism , Xanthomonas campestris/pathogenicity
11.
Mol Pharmacol ; 56(5): 858-66, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10531388

ABSTRACT

We have characterized the pharmacological antagonism, i.e., neutral antagonism or inverse agonism, displayed by a number of alpha-blockers at two alpha1-adrenergic receptor (AR) subtypes, alpha(1a)- and alpha(1b)-AR. Constitutively activating mutations were introduced into the alpha(1a)-AR at the position homologous to A293 of the alpha(1b)-AR where activating mutations were previously described. Twenty-four alpha-blockers differing in their chemical structures were initially tested for their effect on the agonist-independent inositol phosphate response mediated by the constitutively active A271E and A293E mutants expressed in COS-7 cells. A selected number of drugs also were tested for their effect on the small, but measurable spontaneous activity of the wild-type alpha(1a)- and alpha(1b)-AR expressed in COS-7 cells. The results of our study demonstrate that a large number of structurally different alpha-blockers display profound negative efficacy at both the alpha(1a)- and alpha(1b)-AR subtypes. For other drugs, the negative efficacy varied at the different constitutively active mutants. The most striking difference concerns a group of N-arylpiperazines, including 8-[2-[4-(5-chloro-2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro [4, 5] decane-7,9-dione (REC 15/3039), REC 15/2739, and REC 15/3011, which are inverse agonists with profound negative efficacy at the wild-type alpha(1b)-AR, but not at the alpha(1a)-AR.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists , Adrenergic alpha-Antagonists/pharmacology , Animals , COS Cells , Cricetinae , Humans , Inositol Phosphates/metabolism , Ligands , Models, Molecular , Mutagenesis , Receptors, Adrenergic, alpha-1/genetics , Structure-Activity Relationship , Transfection
12.
Proc Natl Acad Sci U S A ; 96(16): 9368-73, 1999 Aug 03.
Article in English | MEDLINE | ID: mdl-10430949

ABSTRACT

Studies of essential pathogenicity determinants in Gram-negative bacteria have revealed the conservation of type III protein secretion systems that allow delivery of virulence factors into host cells from plant and animal pathogens. Ten of 21 Hrp proteins of the plant pathogen Xanthomonas campestris pv. vesicatoria have been suggested to be part of a type III machinery. Here, we report the hrp-dependent secretion of two avirulence proteins, AvrBs3 and AvrRxv, by X. campestris pv. vesicatoria strains that constitutively express hrp genes. Secretion occurred without leakage of a cytoplasmic marker in minimal medium containing BSA, at pH 5.4. Secretion was strictly hrp-dependent because a mutant carrying a deletion in hrcV, a conserved hrp gene, did not secrete AvrBs3 and AvrRxv. Moreover, the Hrp system of X. campestris pv. vesicatoria was able to secrete proteins from two other plant pathogens: PopA, a protein secreted via the Hrp system in Ralstonia solanacearum, and AvrB, an avirulence protein from Pseudomonas syringae pv. glycinea. Interestingly, X. campestris pv. vesicatoria also secreted YopE, a type III-secreted cytotoxin of the mammalian pathogen Yersinia pseudotuberculosis in a hrp-dependent manner. YerA, a YopE-specific chaperone, was required for YopE stability but not for secretion in X. campestris pv. vesicatoria. Our results demonstrate the functional conservation of the type III system of X. campestris for secretion of proteins from both plant and mammalian pathogens and imply recognition of their respective secretion signals.


Subject(s)
Bacterial Proteins/genetics , Plants/microbiology , Xanthomonas campestris/physiology , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/biosynthesis , Bacterial Toxins/genetics , Cloning, Molecular , Gene Expression Regulation, Bacterial , Glucuronidase/biosynthesis , Glucuronidase/genetics , Mammals , Mutagenesis , Pseudomonas/genetics , Recombinant Fusion Proteins/biosynthesis , Sequence Deletion , Transcription Activator-Like Effectors , Virulence , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity , Yersinia pseudotuberculosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...