Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Endocr Connect ; 12(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37855374

ABSTRACT

Although hyperandrogenism is a frequent cause of consultation in adolescent girls, more severe forms with virilization must lead to suspicion of an adrenal or ovarian tumor. However, they may also reveal a 46,XY disorder of sexual development (DSD). Here, we describe four adolescent girls referred for pubertal virilization and in whom we diagnosed a 46,XY DSD. We performed gene mutation screening by Sanger sequencing (all patients) and by next-generation sequencing (NGS) in patient #4. We identified new heterozygous NR5A1 gene variants in patients #1 and #2 and a homozygous SRD5A2 gene deletion in patient #3. Patient #4 received a diagnosis of complete androgen insensitivity in childhood; however, due the unusual pubertal virilization, we completed the gene analysis by NGS that revealed two heterozygous HSD17B3 variants. This work underlines the importance of considering the hypothesis of 46,XY DSD in adolescent girls with unexplained virilization at puberty.

2.
Phys Chem Chem Phys ; 18(25): 17105-15, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27296228

ABSTRACT

Pterins, derivatives of 2-aminopteridin-4(3H)-one, are natural photosensitizers, common to many biological systems. Indications that these photosensitizers are also present in the sea-surface microlayer motivated the study of the photophysical and photochemical properties of 6-carboxypterin (CPT), which was chosen as a model for this group of photoactive compounds. The kinetics of excited CPT in the singlet and triplet state in the presence of halides and organics were studied in aqueous solutions at neutral pH by means of steady-state fluorescence and laser-flash photolysis. The fluorescence of CPT was efficiently quenched by two halides (iodide and bromide) and by four carboxylic acids (lactic, malonic, propionic and citric acid) with reaction rates close to the diffusion-controlled limit. In the triplet state, the triplet absorption spectrum was measured and its pH dependence was studied. The triplet state of CPT showed relatively high reactivity towards iodide, but no reaction with bromide or chloride could be observed. No singlet or triplet state quenching in the presence of limonene could be measured. A reaction mechanism is proposed, initiated by electron transfer from the quencher to the excited photosensitizer. This type of photo-induced reaction in the sea-surface microlayer has the potential to trigger the production of many oxidized species, including halogen atoms, in the bulk and gaseous phases.

4.
Horm Metab Res ; 47(7): 497-503, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25365508

ABSTRACT

Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by fetal macrosomia, macroglossia, and abdominal wall defects. BWS patients are at risk to develop Wilms tumor, neuroblastoma, hepatoblastoma, and adrenal tumors. A young woman with BWS features, but with inconclusive genetic evidence for the disease, came to clinical observation for signs of virilization at the age of 16 years. An adrenocortical tumor was diagnosed and surgically resected. The tumor underwent 2 local relapses that were also surgically treated. The patient was also operated to remove a breast fibroadenoma. SNP arrays were used to analyze chromosome abnormalities in normal and tumor samples from the patient and her parents. The patient presented genome-wide mosaic paternal uniparental disomy (patUPD) both in the adrenocortical and the breast tumors, with different degrees of loss of heterozygosity (LOH). The more recent relapses of the adrenocortical tumor showed a loss of part of chromosome 17p that was absent in the first tumor. Analysis of a skin biopsy sample also showed mosaic patUPD with partial LOH, while no LOH was detected in leukocyte DNA. This case shows that virilizing adrenocortical tumors may be a clinical feature of patients with BWS. The SNP array technology is useful to diagnose genome-wide patUPD mosaicism in BWS patients with an inconclusive molecular diagnosis and underlines the tumorigenic potential of the absence of the maternal genome combined with an excess of the paternal genome.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Beckwith-Wiedemann Syndrome/genetics , Uniparental Disomy , Virilism/genetics , Adolescent , Female , Hirsutism/genetics , Humans , Polymorphism, Single Nucleotide , Young Adult
5.
Pediatr Blood Cancer ; 61(1): 140-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23970395

ABSTRACT

BACKGROUND: Wilms Tumor (WT) can occur in association with tumor predisposition syndromes and/or with clinical malformations. These associations have not been fully characterized at a clinical and molecular genetic level. This study aims to describe clinical malformations, genetic abnormalities, and tumor predisposition syndromes in patients with WT and to propose guidelines regarding indications for clinical and molecular genetic explorations. PROCEDURE: This retrospective study analyzed clinical abnormalities and predisposition syndromes among 295 patients treated for WT between 1986 and 2009 in a single pediatric oncological center. RESULTS: Clinically identified malformations and predisposition syndromes were observed in 52/295 patients (17.6%). Genetically proven tumor predisposition syndromes (n = 14) frequently observed were syndromes associated with alterations of the chromosome WT1 region such as WAGR (n = 6) and Denys-Drash syndromes (n = 3), syndromes associated with alterations of the WT2 region (Beckwith-Wiedeman syndrome, n = 3), and Fanconi anemia (n = 2). Hemihypertrophy and genito-urinary malformations (n = 12 and n = 16, respectively) were the most frequently identified malformations. Other different syndromes or malformations (n = 10) were less frequent. Median age of WT diagnosis was significantly earlier for children with malformations than those without (27 months vs. 37 months, P = 0.0009). There was no significant difference in terms of 5-year EFS and OS between WT patients without or with malformations. CONCLUSIONS: The frequency of malformations observed in patients with WT underline the need of genetic counseling and molecular genetic explorations for a better follow-up of these patients, with a frequently good outcome. A decisional tree, based on clinical observations of patients with WT, is proposed to guide clinicians for further molecular genetic explorations.


Subject(s)
Abnormalities, Multiple , Wilms Tumor/complications , Wilms Tumor/genetics , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Humans , Male , Retrospective Studies , Syndrome , Wilms Tumor/mortality
6.
Horm Res Paediatr ; 80(6): 457-65, 2013.
Article in English | MEDLINE | ID: mdl-24335096

ABSTRACT

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome associated with an increased risk of pediatric tumors. The underlying molecular abnormalities may be genetic (CDKN1C mutations or 11p15 paternal uniparental isodisomy, pUPD) or epigenetic (imprinting center region 1, ICR1, gain of methylation, ICR1 GOM, or ICR2 loss of methylation, ICR2 LOM). AIM: We aimed to describe a cohort of 407 BWS patients with molecular defects of the 11p15 domain followed prospectively after molecular diagnosis. RESULTS: Birth weight and length were significantly higher in patients with ICR1 GOM than in the other groups. ICR2 LOM and CDKN1C mutations were associated with a higher prevalence of exomphalos. Mean adult height (regardless of molecular subtype, n = 35) was 1.8 ± 1.2 SDS, with 18 patients having a final height above +2 SDS. The prevalence of tumors was 8.6% in the whole population; 28.6 and 17.3% of the patients with ICR1 GOM (all Wilms tumors) and 11p15 pUPD, respectively, developed a tumor during infancy. Conversely, the prevalence of tumors in patients with ICR2 LOM and CDKN1C mutations were 3.1 and 8.8%, respectively, with no Wilms tumors. CONCLUSION: Based on these results for a large cohort, we formulated guidelines for the follow-up of these patients according to the molecular subtype of BWS.


Subject(s)
Beckwith-Wiedemann Syndrome/complications , Cell Transformation, Neoplastic/genetics , Child Development , Monitoring, Physiologic/standards , Neoplasms/etiology , Adult , Beckwith-Wiedemann Syndrome/epidemiology , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/physiopathology , Child , Child, Preschool , Cohort Studies , Female , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Male , Monitoring, Physiologic/methods , Neoplasms/epidemiology , Neoplasms/genetics , Practice Guidelines as Topic , Prevalence , Risk Factors , Signal Transduction/genetics
7.
J Med Genet ; 50(12): 823-30, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24065356

ABSTRACT

BACKGROUND: Russell Silver syndrome (RSS) leads to prenatal and postnatal growth retardation. About 55% of RSS patients present a loss-of-methylation of the paternal ICR1 domain on chromosome 11p15. CDKN1C is a cell proliferation inhibitor encoded by an imprinted gene in the 11p15 ICR2 domain. CDKN1C mutations lead to Beckwith Wiedemann syndrome (BWS, overgrowth syndrome) and in IMAGe syndrome which associates growth retardation and adrenal insufficiency. We searched for CDKN1C mutations in a cohort of clinically diagnosed RSS patients with no molecular anomaly. METHOD: The coding sequence and intron-exon boundaries of CDKN1C were analysed in 97 RSS patients. The impact of CDKN1C variants on the cell cycle in vitro were determined by flow cytometry. Stability of CDKN1C was studied by western immunoblotting after inhibition of translation with cycloheximide. RESULTS: We identified the novel c.836G>[G;T] (p.Arg279Leu) mutation in a familial case of intrauterine growth retardation (IUGR) with RSS phenotype and no evidence of IMAGe. All the RSS patients inherited this mutation from their mothers (consistent with monoallelic expression from the maternal allele of the gene). A mutation of this amino acid (p.Arg279Pro) has been reported in cases of IMAGe. Functional analysis showed that Arg279Leu (RSS) did not affect the cell cycle, whereas the Arg279Pro mutation (IMAGe) led to a gain of function. Arg279Leu (RSS) led to an increased stability which could explain an increased activity of CDKN1C. CONCLUSIONS: CDKN1C mutations cause dominant maternally transmitted RSS, completing the molecular mirror with BWS. CDKN1C should be investigated in cases with family history of RSS.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p57/genetics , Mutation/genetics , Proliferating Cell Nuclear Antigen/genetics , Silver-Russell Syndrome/genetics , Amino Acid Sequence , Analysis of Variance , Binding Sites/genetics , Computer Simulation , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Female , Fetal Growth Retardation/genetics , HeLa Cells , Humans , Male , Molecular Sequence Data , Pedigree , Proliferating Cell Nuclear Antigen/metabolism , Sequence Alignment , Silver-Russell Syndrome/physiopathology
8.
J Colloid Interface Sci ; 408: 43-53, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23948456

ABSTRACT

Geopolymer materials are obtained by the alkaline activation of aluminosilicate sources, the best of which is metakaolin. However, every raw material is different, and very few comparative studies have been done on different metakaolin sources. The aim of this work is to develop methods for the prediction of the working properties of geopolymer materials based on the reactivity of the metakaolin employed. Infrared spectroscopy showed direct relationships between the wettability, the Si/Al ratio and the kinetics of conversion of Si-O-Si bonds to Si-O-Al bonds. Moreover, it was demonstrated that the presence of impurities and the reactivity of the metakaolin can generate the formation of one or several networks. Finally, a descriptive model of the mechanism of geopolymer formation was proposed that takes into account the quality of metakaolin used.

9.
Clin Genet ; 84(1): 78-81, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23061425

ABSTRACT

We report a child with Beckwith-Wiedemann syndrome (BWS) as the consequence of an apparently balanced, maternally inherited reciprocal translocation t(11;17)(p15.5;q21.3). His mother and aunt, who inherited the translocation from their father, did not have BWS. At birth, long QT syndrome (LQTS) was diagnosed in this child and, secondarily, among apparently healthy family members carrying the translocation. By FISH analysis, the breakpoint in 11p15.5 interrupts the KCNQ1 gene between exons 2 and 10 and causes a loss of methylation of the IC2 (and thus BWS) on the maternally inherited der(11) chromosome. To explain the presence of LQTS segregating with the t(11;17) translocation in this family, we hypothesize that the translocation that interrupts KCNQ1 allow translation of an abnormal short allele that interferes in a dominant negative way with the normal isoform 1 of KCNQ1 in the heart (where this allele is not subject to parental imprint). This appears to be the first report of BWS with congenital LQTS, which should be considered as a rare but serious complication to be searched systematically in patients with BWS due to 11p15 rearrangements.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , KCNQ1 Potassium Channel/genetics , Long QT Syndrome/genetics , Translocation, Genetic , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/pathology , Child, Preschool , Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 17 , Female , Humans , Inheritance Patterns , Karyotyping , Long QT Syndrome/diagnosis , Long QT Syndrome/pathology , Pedigree
11.
Neuroimage ; 63(1): 245-52, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22776463

ABSTRACT

The evaluation of spinal cord neuronal activity in humans with functional magnetic resonance imaging (fMRI) is technically challenging. Major difficulties arise from cardiac and respiratory movement artifacts that constitute significant sources of noise. In this paper we assessed the Correction of Structured noise using spatial Independent Component Analysis (CORSICA). FMRI data of the cervical spinal cord were acquired in 14 healthy subjects using gradient-echo EPI. Nociceptive electrical stimuli were applied to the thumb. Additional data with short TR (250 ms, to prevent aliasing) were acquired to generate a spatial map of physiological noise derived from Independent Component Analysis (ICA). Physiological noise was subsequently removed from the long-TR data after selecting independent components based on the generated noise map. Stimulus-evoked responses were analyzed using the general linear model, with and without CORSICA and with a regressor generated from the cerebrospinal fluid region. Results showed higher sensitivity to detect stimulus-related activation in the targeted dorsal segment of the cord after CORSICA. Furthermore, fewer voxels showed stimulus-related signal changes in the CSF and outside the spinal region, suggesting an increase in specificity. ICA can be used to effectively reduce physiological noise in spinal cord fMRI time series.


Subject(s)
Algorithms , Evoked Potentials, Somatosensory/physiology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Nociception/physiology , Spinal Cord/physiology , Humans , Principal Component Analysis , Reproducibility of Results , Sensitivity and Specificity , Signal-To-Noise Ratio
12.
Prog Brain Res ; 194: 191-202, 2011.
Article in English | MEDLINE | ID: mdl-21867804

ABSTRACT

It is well established that a spinal circuitry can generate locomotor movements of the hindlimbs in absence of descending supraspinal inputs. This is based, among others, on the observation that after a complete spinalization, cats can walk with the hindlimbs on a treadmill. Does this spinal pattern generator (CPG) also participate in the recovery of locomotion after a partial spinal cord lesion (SCI)? After such SCI, functional reorganization can occur spontaneously along the whole neuraxis, namely the spinal cord circuitry below the lesion (CPG) and in supraspinal structures still partially connected to the spinal cord. This review focuses mainly on the capacity of the spinal and supraspinal structures to reorganize spontaneously after incomplete SCI in animals (rats and cats). BMI approaches to foster recovery of functions after various types of SCI should take into account these changes at the various levels of the CNS.


Subject(s)
Central Nervous System/anatomy & histology , Central Nervous System/pathology , Central Nervous System/physiology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Animals , Central Nervous System/physiopathology , Hindlimb/innervation , Hindlimb/physiology , Locomotion/physiology , Nerve Regeneration/physiology , Neuronal Plasticity/physiology , Recovery of Function , Spinal Cord/anatomy & histology , Spinal Cord/pathology , Spinal Cord/physiology , Spinal Cord/physiopathology
13.
Neuroimage ; 57(3): 1068-76, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21596140

ABSTRACT

One goal of in vivo neuroimaging is the detection of neurodegenerative processes and anatomical reorganizations after spinal cord (SC) injury. Non-invasive examination of white matter fibers in the living SC can be conducted using magnetic resonance diffusion-weighted imaging. However, this technique is challenging at the spinal level due to the small cross-sectional size of the cord and the presence of physiological motion and susceptibility artifacts. In this study, we acquired in vivo high angular resolution diffusion imaging (HARDI) data at 3T in cats submitted to partial SC injury. Cats were imaged before, 3 and 21 days after injury. Spatial resolution was enhanced to 1.5 × 1.5 × 1 mm(3) using super-resolution technique and distortions were corrected using the reversed gradient method. Tractography-derived regions of interest were generated in the dorsal, ventral, right and left quadrants, to evaluate diffusion tensor imaging (DTI) and Q-Ball imaging metrics with regards to their sensitivity in detecting primary and secondary lesions. A three-way ANOVA tested the effect of session (intact, D3, D21), cross-sectional region (left, right, dorsal and ventral) and rostrocaudal location. Significant effect of session was found for FA (P<0.001), GFA (P<0.05) and radial diffusivity (P<0.001). Post-hoc paired T-test corrected for multiple comparisons showed significant changes at the lesion epicenter (P<0.005). More interestingly, significant changes were also found several centimeters from the lesion epicenter at both 3 and 21 days. This decrease was specific to the type of fibers, i.e., rostrally to the lesion on the dorsal aspect of the cord and caudally to the lesion ipsilaterally, suggesting the detection of Wallerian degeneration.


Subject(s)
Diffusion Tensor Imaging , Image Interpretation, Computer-Assisted/methods , Spinal Cord Injuries/pathology , Wallerian Degeneration/pathology , Animals , Cats , Spinal Cord/pathology
14.
J Colloid Interface Sci ; 356(1): 303-10, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21255789

ABSTRACT

In addition to be an environmentally friendly material, hemp fibres are also inexpensive reinforcements in thermoplastics or concrete composites, due to their intrinsic mechanical, thermal and acoustic properties. The morphology of hemp fibres has been chemically modified in order to enhance the matrix/fibre interface and has been examined by Scanning Electron Microscopy (SEM). In this paper, Gas Chromatography (GC) and Atomic Force Microscopy (AFM) were used to investigate the influence of treatments on the composition of hemp fibres and also on the micro-adhesive interactions between a silica colloidal probe and the surface of the fibres using Chemical Force Microscopy (CFM). Microscopy studies and chemical analysis showed that each treatment tends to lead to a morphology of interconnected web-like structure of hemp fibres. It was found that on an average, the adhesion force, contribution of capillary force and Van der Waals' forces, is higher in the case of NaOH treatment.

15.
Neuroimage ; 55(3): 1024-33, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21232610

ABSTRACT

Characterizing demyelination/degeneration of spinal pathways in traumatic spinal cord injured (SCI) patients is crucial for assessing the prognosis of functional rehabilitation. Novel techniques based on diffusion-weighted (DW) magnetic resonance imaging (MRI) and magnetization transfer (MT) imaging provide sensitive and specific markers of white matter pathology. In this paper we combined for the first time high angular resolution diffusion-weighted imaging (HARDI), MT imaging and atrophy measurements to evaluate the cervical spinal cord of fourteen SCI patients and age-matched controls. We used high in-plane resolution to delineate dorsal and ventrolateral pathways. Significant differences were detected between patients and controls in the normal-appearing white matter for fractional anisotropy (FA, p<0.0001), axial diffusivity (p<0.05), radial diffusivity (p<0.05), generalized fractional anisotropy (GFA, p<0.0001), magnetization transfer ratio (MTR, p<0.0001) and cord area (p<0.05). No significant difference was detected in mean diffusivity (p=0.41), T1-weighted (p=0.76) and T2-weighted (p=0.09) signals. MRI metrics were remarkably well correlated with clinical disability (Pearson's correlations, FA: p<0.01, GFA: p<0.01, radial diffusivity: p=0.01, MTR: p=0.04 and atrophy: p<0.01). Stepwise linear regressions showed that measures of MTR in the dorsal spinal cord predicted the sensory disability whereas measures of MTR in the ventro-lateral spinal cord predicted the motor disability (ASIA score). However, diffusion metrics were not specific to the sensorimotor scores. Due to the specificity of axial and radial diffusivity and MT measurements, results suggest the detection of demyelination and degeneration in SCI patients. Combining HARDI with MT imaging is a promising approach to gain specificity in characterizing spinal cord pathways in traumatic injury.


Subject(s)
Demyelinating Diseases/pathology , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Neurodegenerative Diseases/pathology , Spinal Cord Injuries/pathology , Adult , Aged , Artifacts , Atrophy , Disability Evaluation , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Spinal Cord/pathology , Young Adult
16.
Eur J Med Genet ; 53(6): 400-3, 2010.
Article in English | MEDLINE | ID: mdl-20826236

ABSTRACT

Beckwith-Wiedemann syndrome (BWS) is a rare overgrowth syndrome associated with an increased risk in childhood tumours. The phenotypic variability in BWS reflects its molecular heterogeneity. This syndrome is a multigenic disorder caused by dysregulation of imprinted growth regulatory genes in the 11p15.5 region. The most commonly reported tumours in this syndrome are tumours of embryologic origin such as Wilms tumours, hepatoblastomas, neuroblastomas, rhabdomyosarcomas and adrenocortical carcinomas. We report the case of a 10-year-old patient diagnosed with BWS, harbouring a CDKN1C (p57(KIP2)) mutation, who developed a T-type acute lymphoblastic leukaemia. To our knowledge it is the first report of an acute lymphoblastic leukaemia of T-type in a child with BWS. We discuss the possibility of a link between BWS and leukaemia via one of the few known negative regulator of hematopoiesis, the transforming growth factor beta pathway, depending upon the up-regulation of CDKN1C.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Child , Chromosomes, Human, Pair 11 , Genomic Imprinting , Humans
17.
J Hazard Mater ; 181(1-3): 633-9, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20638962

ABSTRACT

This study was a comparison between Ru-catalysts and similar, previously investigated, Pt-catalysts. In this paper, ruthenium catalysts for catalytic wet air oxidation are prepared, characterized and tested. Both catalysts were supported on commercial CeO2 as well as mixed oxide Zr(0.1)(Ce(0.75)Pr(0.25))(0.9)O2. The catalysts were characterized by measuring the oxygen storage capacities (OSC), BET, XRD, FTIR and chemisorption of hydrogen. In addition, the effect of sintering (treatments under H2) was compared with both of the catalysts. The comparison of the results showed that initial intrinsic activity of ruthenium is not significantly influenced by the type of the support, which is contrast to platinum. Furthermore, the particle size of Ru had an important effect on CWAO activity: the higher the particle size, the better the activity. This was different with Pt-catalysts, where the optimal particle size was smaller, having about 15% of metal dispersion.


Subject(s)
Acetic Acid/chemistry , Cerium , Platinum , Ruthenium , Air , Catalysis , Oxidation-Reduction , Oxides , Particle Size
18.
J Neurosci Methods ; 190(2): 279-88, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20471995

ABSTRACT

A computer-aided method for the tracking of morphological markers in fluoroscopic images of a rat walking on a treadmill is presented and validated. The markers correspond to bone articulations in a hind leg and are used to define the hip, knee, ankle and metatarsophalangeal joints. The method allows a user to identify, using a computer mouse, about 20% of the marker positions in a video and interpolate their trajectories from frame-to-frame. This results in a seven-fold speed improvement in detecting markers. This also eliminates confusion problems due to legs crossing and blurred images. The video images are corrected for geometric distortions from the X-ray camera, wavelet denoised, to preserve the sharpness of minute bone structures, and contrast enhanced. From those images, the marker positions across video frames are extracted, corrected for rat "solid body" motions on the treadmill, and used to compute the positional and angular gait patterns. Robust Bootstrap estimates of those gait patterns and their prediction and confidence bands are finally generated. The gait patterns are invaluable tools to study the locomotion of healthy animals or the complex process of locomotion recovery in animals with injuries. The method could, in principle, be adapted to analyze the locomotion of other animals as long as a fluoroscopic imager and a treadmill are available.


Subject(s)
Automation , Biomechanical Phenomena , Image Processing, Computer-Assisted/methods , Software Design , Video Recording/methods , Walking , Algorithms , Animals , Data Interpretation, Statistical , Gait/physiology , Hindlimb/diagnostic imaging , Hindlimb/physiology , Image Processing, Computer-Assisted/instrumentation , Radiography , Rats , Rats, Wistar , User-Computer Interface , Video Recording/instrumentation , Walking/physiology , X-Rays
19.
Ann Endocrinol (Paris) ; 71(3): 237-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20362968

ABSTRACT

Epigenetic mechanisms play a key role in regulating gene expression. One hallmark of these modifications is DNA methylation at cytosine residues of CpG dinucleotides in gene promoters, transposons and imprinting control regions. Genomic imprinting refers to an epigenetic marking of genes that results in monoallelic expression depending on their parental origin. There are two critical time periods in epigenetic reprogramming: gametogenesis and early preimplantation development. Major reprogramming takes place in primordial germ cells in which parental imprints are erased and totipotency is restored [1]. Imprint marks are then and re-established during spermatogenesis or oogenesis, depending on sex [1-3]. Upon fertilization, genome-wide demethylation occurs followed by a wave of de novo methylation, both of which are resisted by imprinted loci [4]. Epigenetic patterns are usually faithfully maintained during development. However, this maintenance sometimes fails, resulting in the disturbance of epigenetic patterns and human disorders. For example, two fetal growth disorders, the Beckwith-Wiedemann (BWS) and the Silver-Russell (SRS) syndromes with opposite phenotypes, are caused by abnormal DNA methylation at the 11p15 imprinted locus [5-7]: respectively loss of methylation at the Imprinting Region Center (ICR2) or gain of methylation at ICR1 in BWS and loss of methylation at ICR1 in SRS. Early embryogenesis is a critical time for epigenetic regulation, and this process is sensitive to environmental factors. The use of assisted reproductive technology (ART) has been shown to induce epigenetic alterations and to affect fetal growth and development [8-11]. In humans, several imprinting disorders, including BWS, occur at significantly higher frequencies in children conceived with the use of ART than in children conceived spontaneously [12,13]. The cause of these epigenetic imprinting disorders (following ART, unfertility causes, hormonal hyperstimulation, in vitro fertilization-IVF, Intracytoplasmic sperm injection-ICSI, micro-manipulation of gametes, exposure to culture medium, in vitro ovocyte maturation, time of transfer) remains unclear. However, recent data have shown that in patients with BWS or SRS, including those born following the use of ART, the DNA methylation defect involves imprinted loci other than 11p15 [14,15] (11p15 region: CTCF binding sites at ICR1, H19 and IGF2 DMRs, KCNQ1OT1 [ICR2], SNRPN [chromosome 15 q11-13], PEG/MEST1 [chromosome 7q31], IGF type2 receptor and ZAC1 [chromosome 6q26 et 6q24 respectively], DLK1/GTL2-IG-DMR [chromosome 14q32] and GNAS locus [chromosome 20q13.3]). This suggests that unfaithful maintenance of DNA methylation marks following fertilization involves the dysregulation of a trans-acting regulatory factor that could be altered by ART.


Subject(s)
Reproductive Techniques, Assisted/statistics & numerical data , Animals , Beckwith-Wiedemann Syndrome/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Female , Humans , Male , Silver-Russell Syndrome/genetics
20.
Neuroimage ; 50(3): 1074-84, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20060914

ABSTRACT

Functional MRI of the spinal cord is challenging due to the small cross section of the cord and high level of physiological noise. Though blood oxygenation level-dependent (BOLD) contrast has been used to study specific responses of the spinal cord to various stimuli, it has not been demonstrated using a controlled stimulus. In this paper, we use hypercapnic manipulation to study the sensitivity and specificity of functional MRI in the human cervical spinal cord. Simultaneous MR imaging in the brain and spinal cord was performed for direct comparison with the brain, in which responses to hypercapnia have been more extensively characterized. Original contributions include: (i) prospectively controlled hypercapnic changes in end-tidal PCO(2), (ii) simultaneous recording of BOLD responses in the brain and spinal cord, and (iii) generation of statistical maps of BOLD responses throughout the brain and spinal cord, taking into account physiological noise sources. Results showed significant responses in all subjects both in the brain and the spinal cord. In anatomically-defined regions of interest, mean percent changes were 0.6% in the spinal cord and 1% in the brain. Analysis of residual variance demonstrated significantly larger contribution of physiological noise in the spinal cord (P<0.005). To obtain more reliable results from fMRI in the spinal cord, it will be necessary to improve sensitivity through the use of highly parallelized coil arrays and better modeling of physiological noise. Finely, we believe that the use of controlled global stimuli, such as hypercapnia, will help assess the effectiveness of new acquisition techniques.


Subject(s)
Hypercapnia/physiopathology , Spinal Cord/physiopathology , Brain/blood supply , Brain/physiopathology , Brain Mapping , Carbon Dioxide/blood , Cervical Vertebrae , Female , Humans , Hypercapnia/blood , Magnetic Resonance Imaging , Male , Oxygen/blood , Spinal Cord/blood supply , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...