Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833312

ABSTRACT

BACKGROUND: Predicting Immune-effector Cell Associated Neurotoxicity Syndrome (ICANS) in patients infused with Chimeric Antigen Receptor T cells (CAR-T) is still a conundrum. This complication, thought to be consequent to CAR-T cell activation, arises a few days after infusion, when circulating CAR-T cells are scarce and specific CAR-T cell-derived biomarkers are lacking. METHODS: Human CD19.CAR-T cells were generated to gain insight into CAR+ extracellular vesicle (CAR+EV) release upon target engagement. A prospective cohort of 100 B-cell lymphoma patients infused with approved CD19.CAR-T cell products (axi-cel, brexu-cel and tisa-cel) was assessed for plasma CAR+EVs as potential biomarkers of in vivo CD19.CAR-T cell activation and predictors of ICANS. Human induced pluripotent stem cells (iPSCs)-derived neural cells were used as a model for CAR+EV-induced neurotoxicity. RESULTS: In vitro, exosome-like CAR+EVs were released by CD19.CAR-T cells upon target engagement. In vivo, CAR+EVs were detectable as early as 1 hour in the plasma of patients. A concentration > 132.8 CAR+EVs/µl at hour +1 or > 224.5 CAR+EVs/µl at day +1 predicted ICANS in advance of 4 days, with a sensitivity up to 96.55% and a specificity up to 80.36%, outperforming other potential ICANS predictors. Enolase 2 (ENO2+) nanoparticles were released by iPSCs-derived neural cells upon CAR+EVs exposure and were increased in the plasma of ICANS patients. CONCLUSIONS: These results convey that plasma CAR+EVs are an immediate signal of CD19.CAR-T cell activation, are suitable predictors of neurotoxicity, and may be involved in ICANS pathogenesis. TRIAL REGISTRATION: NCT04892433, NCT05807789.

SELECTION OF CITATIONS
SEARCH DETAIL
...