Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 351: 143-150, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38281599

ABSTRACT

BACKGROUND: The psychological impact of breast cancer (BC) is substantial, with a significant number of patients (up to 32 %) experiencing post-traumatic stress disorder (PTSD). Exploring the emotional aspects of PTSD through the functional brain-heart interplay (BHI) offers valuable insights into the condition. BHI examines the functional interactions between cortical and sympathovagal dynamics. This study aims to investigate changes in functional directional BHI after trauma-focused (TF) psychotherapy, specifically Eye Movement Desensitization and Reprocessing (EMDR), in comparison to treatment as usual (TAU) among BC patients with PTSD. To our knowledge, this study represents the first examination of such changes. METHODS: We enrolled thirty BC patients who met the criteria for a PTSD diagnosis, with fourteen receiving EMDR and fifteen receiving TAU over a two- to three-month period. We analyzed changes in the emotional response during a script-driven imagery setting. Quantification of the functional interplay between EEG and sympathovagal dynamics was achieved using the synthetic data generation model (SDG) on electroencephalographic (EEG) and heartbeat series. Our focus was on the difference in the BHI index extracted at baseline and post-treatment. RESULTS: We found statistically significant higher coupling in the heart-to-brain direction in patients treated with EMDR compared to controls. This suggests that the flow of information from the autonomic nervous system to the central nervous system is restored following EMDR-induced recovery from PTSD. Furthermore, we observed a significant correlation between improvements in PTSD symptoms and an increase in functional BHI after EMDR treatment. CONCLUSIONS: TF psychotherapy, particularly EMDR, appears to facilitate the restoration of the bottom-up flow of interoceptive information, which is dysfunctional in patients with PTSD. The application of BHI analysis to the study of PTSD not only aids in identifying biomarkers of the disorder but also enhances our understanding of the changes brought about by TF treatments.


Subject(s)
Breast Neoplasms , Cognitive Behavioral Therapy , Stress Disorders, Post-Traumatic , Humans , Female , Stress Disorders, Post-Traumatic/therapy , Stress Disorders, Post-Traumatic/psychology , Breast Neoplasms/therapy , Psychotherapy , Brain , Treatment Outcome
2.
Sci Rep ; 12(1): 1919, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121751

ABSTRACT

Robust biomarkers for anti-epileptic drugs (AEDs) activity in the human brain are essential to increase the probability of successful drug development. The frequency analysis of electroencephalographic (EEG) activity, either spontaneous or evoked by transcranial magnetic stimulation (TMS-EEG) can provide cortical readouts for AEDs. However, a systematic evaluation of the effect of AEDs on spontaneous oscillations and TMS-related spectral perturbation (TRSP) has not yet been provided. We studied the effects of Lamotrigine, Levetiracetam, and of a novel potassium channel opener (XEN1101) in two groups of healthy volunteers. Levetiracetam suppressed TRSP theta, alpha and beta power, whereas Lamotrigine decreased delta and theta but increased the alpha power. Finally, XEN1101 decreased TRSP delta, theta, alpha and beta power. Resting-state EEG showed a decrease of theta band power after Lamotrigine intake. Levetiracetam increased theta, beta and gamma power, while XEN1101 produced an increase of delta, theta, beta and gamma power. Spontaneous and TMS-related cortical oscillations represent a powerful tool to characterize the effect of AEDs on in vivo brain activity. Spectral fingerprints of specific AEDs should be further investigated to provide robust and objective biomarkers of biological effect in human clinical trials.


Subject(s)
Anticonvulsants/pharmacology , Brain Waves/drug effects , Cerebral Cortex/drug effects , Electroencephalography , Lamotrigine/pharmacology , Levetiracetam/pharmacology , Organic Chemicals/pharmacology , Transcranial Magnetic Stimulation , Adult , Cerebral Cortex/physiology , Healthy Volunteers , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...