Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Muscle Res Cell Motil ; 28(6): 329-41, 2007.
Article in English | MEDLINE | ID: mdl-18320334

ABSTRACT

Mechanical properties of the jaw-closing muscles of the cat are poorly understood. These muscles are known to differ in myosin and fibre type compositions from limb muscles. This work aims to correlate mechanical properties of single fibres in cat jaw and limb muscles with their myosin subunit compositions. The stiffness minimum frequency, f(min), which reflects isometric cross-bridge kinetics, was measured in Ca(2+)-activated glycerinated fast and slow fibres from cat jaw and limb muscles for temperatures ranging between 15 and 30 degrees C by mechanical perturbation analysis. At 15 degrees C, f(min) was 0.5 Hz for limb-slow fibres, 4-6 Hz for jaw-slow fibres, and 10-13 Hz for limb-fast and jaw-fast fibres. The activation energy for f(min) obtained from the slope of the Arrhenius plot for limb-slow fibres was 30-40% higher than values for the other three types of fibres. SDS-PAGE and western blotting using highly specific antibodies verified that limb-fast fibres contained IIA or IIX myosin heavy chain (MyHC). Jaw-fast fibres expressed masticatory MyHC while both jaw-fast and jaw-slow fibres expressed masticatory myosin light chains (MLCs). The nucleotide sequences of the 3' ends of the slow MyHC cDNAs isolated from cat masseter and soleus cDNA libraries showed identical coding and 3'-untranslated regions, suggesting that jaw-slow and limb-slow fibres express the same slow MyHC gene. We conclude that the isometric cross-bridge cycling kinetics of jaw-fast and limb-fast fibres detected by f(min) are indistinguishable in spite of differences in MyHC and light chain compositions. However, jaw-slow fibres, in which the same slow MyHCs are found in combination with MLCs of the jaw type, show enhanced cross-bridge cycling kinetics and reduced activation energy for cross-bridge detachment.


Subject(s)
Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/physiology , Myosin Heavy Chains/physiology , Myosin Light Chains/physiology , Amino Acid Sequence , Animals , Base Sequence , Cats , Extremities , Jaw , Kinetics , Masseter Muscle/chemistry , Masseter Muscle/physiology , Molecular Sequence Data , Muscle Fibers, Fast-Twitch/chemistry , Muscle Fibers, Slow-Twitch/chemistry , Muscle, Skeletal/chemistry , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/genetics
2.
J Physiol ; 542(Pt 3): 911-20, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-12154188

ABSTRACT

Inotropic agents that increase the intracellular levels of cAMP have been shown to increase crossbridge turnover kinetics in intact rat ventricular muscle, as measured by the parameter f(min) (the frequency at which dynamic stiffness is minimum). These agents are also known to increase the level of phosphorylation of two candidate myofibrillar proteins: myosin binding protein C (MyBPC) and Troponin I (TnI), but have no effect on myosin light chain 2 phosphorylation (MyLC2). The aim of this study was to investigate whether the phosphorylation of TnI and/or MyBPC was responsible for the increase in crossbridge cycling kinetics (as captured by f(min)) seen with the elevation of cAMP within cardiac tissue. Using barium-activated intact rat papillary muscle, we investigated the actions of isobutylmethylxanthine (IBMX), an inhibitor of cAMP-dependent phosphatase, which simulates the action of beta-adrenergic agents, and the chemical phosphatase 2,3-butanedione monoxime (BDM), which has been shown to dephosphorylate a number of contractile proteins. The presence of 0.6 mM IBMX approximately doubled the f(min) value of intact rat papillary muscle. This action was unaffected by the addition of BDM. In the presence of IBMX and BDM, the level of phosphorylation of MyBPC was unchanged, that of MyLC2 was reduced to 60 % of control, yet that of TnI was markedly increased (to 30 % above control levels). We conclude that TnI phosphorylation, mediated by cAMP-dependent protein kinase A, is the molecular basis for the enhanced crossbridge cycling seen during beta-adrenergic stimulation of the heart.


Subject(s)
Diacetyl/analogs & derivatives , Heart/physiology , Myocardium/metabolism , Receptors, Adrenergic, beta/physiology , Troponin I/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , Animals , Contractile Proteins/metabolism , Diacetyl/pharmacology , In Vitro Techniques , Isometric Contraction/drug effects , Kinetics , Myocardial Contraction/drug effects , Papillary Muscles/drug effects , Papillary Muscles/physiology , Phosphodiesterase Inhibitors/pharmacology , Phosphorylation/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...