Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; : OF1-OF11, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963557

ABSTRACT

Radioimmunotherapy (RIT) uses monoclonal antibodies to deliver radionuclides to cancer cells or the tumor microenvironment and has shown promise in treating localized and diffuse tumors. Although RIT agents have gained FDA/EMA approval for certain hematologic malignancies, effectiveness of RIT in treating solid tumors remains limited. In this study, we present PreTarg-it®, a novel approach for pretargeted RIT, providing optimized delivery of payloads in a two-step regimen. The effectiveness of PreTarg-it® is demonstrated by a powerful combination of ON105, a novel bispecific antibody against both oxidized macrophage migration inhibitory factor (oxMIF) and the histamine-succinyl-glycyl (HSG) hapten, as the first component and the radioactively labeled DOTA-di-HSG peptide as the second component in murine models of cancer. Mice bearing either subcutaneous mouse colorectal CT26 or human pancreatic CFPAC-1 tumors received an i.v. injection of ON105. After ON105 had accumulated in the tumor and cleared from circulation to approximately 1% to 3% of its peak concentration, 177Lu-DOTA-di-HSG peptide was administered. A single PreTarg-it® treatment cycle resulted in tumor regression when mice bearing CT26 tumors were given the highest treatment dose with a pretargeting delay of 3 days. Administered with a 5-day interval, the highest dose arrested tumor growth in both CT26 syngrafts and CFPAC-1 xenografts. In all cases, the highest treatment dose resulted in 100% survival at the study endpoint, whereas the control cohorts showed 0% and 60% survival in the CT26 and CFPAC-1 models, respectively. Therefore, PreTarg-it® holds potential as a novel and potent therapy for patients with hard-to-treat solid tumors, such as pancreatic cancer, as well as those with late-stage malignancies.

2.
Redox Biol ; 75: 103264, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972295

ABSTRACT

MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.

3.
Mol Cancer Ther ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38833646

ABSTRACT

Radioimmunotherapy (RIT) uses mAbs to deliver radionuclides to cancer cells or the tumor microenvironment and has shown promise in treating localized and diffuse tumors. While RIT agents have gained FDA/EMA approval for certain hematological malignancies, effectiveness of RIT in treating solid tumors remains limited. Here we present PreTarg-it®, a novel approach for pretargeted radioimmunotherapy, providing optimized delivery of payloads in a two-step regimen. The effectiveness of PreTarg-it® is demonstrated by a powerful combination of ON105, a novel bispecific antibody against both oxMIF and the histamine-succinyl-glycyl (HSG) hapten, as the first component and the radioactively labeled DOTA-di-HSG peptide as the second component in murine models of cancer. Mice bearing either subcutaneous mouse colorectal CT26 or human pancreatic CFPAC-1 tumors received an intravenous injection of ON105. After ON105 had accumulated in the tumor and cleared from circulation to approximately 1-3% of its peak concentration, 177Lu-DOTA-di-HSG peptide was administered. A single PreTarg-it® treatment cycle resulted in tumor regression when mice bearing CT26 tumors were given the highest treatment dose with a pretargeting delay of three days. Administered with a 5-day interval, the highest dose arrested tumor growth in both CT26 syngrafts and CFPAC-1 xenografts. In all cases, the highest treatment dose resulted in 100% survival at the study endpoint whereas the control cohorts showed 0% and 60% survival in the CT26 and CFPAC-1 models, respectively. Therefore, PreTarg-it® holds potential as a novel and potent therapy for patients with hard-to-treat solid tumors such as pancreatic cancer, as well as those with late-stage malignancies.

4.
Eur J Pharmacol ; 956: 175997, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37579967

ABSTRACT

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic inflammatory cytokine that emerged as a pivotal regulator in the pathogenesis of several autoimmune diseases including rheumatoid arthritis (RA). MIF occurs in two immunologically distinct conformational isoforms, indicated as reduced (redMIF) and oxidized MIF (oxMIF) where the latter exerts disease-related activities. In this study we demonstrate the presence of circulating oxMIF in RA patients and investigate the in vivo effects of an oxMIF-neutralizing antibody in a murine model of RA. By advanced antibody engineering we generated the fully human anti-oxMIF antibody ON104 with abolished effector functions. The therapeutic potential of ON104 was tested in a model of Collagen-Induced Arthritis (CIA) in DBA/1j mice. At disease onset, the mice received ON104 twice a week for three weeks. Clinical symptoms were assessed daily, and histological examinations of the joints were performed at the end of the study. Antibody ON104, specifically targeting human and murine oxMIF, is highly affine and does not elicit effector functions in vitro. The treatment of CIA mice with ON104 profoundly modulated disease progression with marked amelioration of clinical signs of arthritis that was associated with reduced synovial and cartilage damage and reduced F4/80-positive macrophages in the joints. These data prove that oxMIF is a relevant target in a well-known model of human RA and its specific neutralization by the antibody ON104 ameliorates clinical and histological signs of the disease in the so-treated mice. Thus, ON104 represents a new and promising treatment option for RA and possibly other autoimmune diseases.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Macrophage Migration-Inhibitory Factors , Humans , Mice , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Antibodies, Monoclonal/therapeutic use , Mice, Inbred DBA
5.
Mol Cancer Ther ; 22(5): 555-569, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37067909

ABSTRACT

High levels of macrophage migration inhibitory factor (MIF) in patients with cancer are associated with poor prognosis. Its redox-dependent conformational isoform, termed oxidized MIF (oxMIF), is a promising tumor target due to its selective occurrence in tumor lesions and at inflammatory sites. A first-generation anti-oxMIF mAb, imalumab, was investigated in clinical trials in patients with advanced solid tumors, where it was well tolerated and showed signs of efficacy. However, imalumab has a short half-life in humans, increased aggregation propensity, and an unfavorable pharmacokinetic profile. Here, we aimed to optimize imalumab by improving its physicochemical characteristics and boosting its effector functions. Point mutations introduced into the variable regions reduced hydrophobicity and the antibodies' aggregation potential, and increased plasma half-life and tumor accumulation in vivo, while retaining affinity and specificity to oxMIF. The introduction of mutations into the Fc region known to increase antibody-dependent cellular cytotoxicity resulted in enhanced effector functions of the novel antibodies in vitro, whereas reduced cytokine release from human peripheral blood mononuclear cells in the absence of target antigen by the engineered anti-oxMIF mAb ON203 versus imalumab reveals a favorable in vitro safety profile. In vivo, ON203 mAb demonstrated superior efficacy over imalumab in both prophylactic and established prostate cancer (PC3) mouse xenograft models. In summary, our data highlight the potential of the second-generation anti-oxMIF mAb ON203 as a promising immunotherapy for patients with solid tumors, warranting clinical evaluation.


Subject(s)
Antineoplastic Agents , Macrophage Migration-Inhibitory Factors , Prostatic Neoplasms , Male , Mice , Animals , Humans , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/chemistry , Leukocytes, Mononuclear , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Prostatic Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...