Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Discov Nano ; 19(1): 28, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353903

ABSTRACT

The horizon of nanomedicine research is moving toward the design of therapeutic tools able to be completely safe per se, and simultaneously be capable of becoming toxic when externally activated by stimuli of different nature. Among all the stimuli, ultrasounds come to the fore as an innovative approach to produce cytotoxicity on demand in presence of NPs, without invasiveness, with high biosafety and low cost. In this context, zinc oxide nanoparticles (NPs) are among the most promising metal oxide materials for theranostic application due to their optical and semi-conductor properties, high surface reactivity, and their response to ultrasound irradiation. Here, ZnO nanocrystals constitute the stimuli-responsive core with a customized biomimicking lipidic shielding, resembling the composition of natural extracellular vesicles. This core-shell hybrid structure provides high bio- and hemocompatibility towards healthy cells and is here proofed for the treatment of Burkitt's Lymphoma. This is a very common haematological tumor, typically found in children, for which consolidated therapies are so far the combination of chemo-therapy drugs and targeted immunotherapy. In this work, the proposed safe-by-design antiCD38-targeted hybrid nanosystem exhibits an efficient selectivity toward cancerous cells, and an on-demand activation, leading to a significant killing efficacy due to the synergistic interaction between US and targeted hybrid NPs. Interestingly, this innovative treatment does not significantly affect healthy B lymphocytes nor a negative control cancer cell line, a CD38- acute myeloid leukemia, being thus highly specific and targeted. Different characterization and analyses confirmed indeed the effective formation of targeted hybrid ZnO NPs, their cellular internalization and the damages produced in Burkitt's Lymphoma cells only with respect to the other cell lines. The presented work holds promises for future clinical applications, as well as translation to other tumor types.

3.
Nanoscale ; 15(35): 14628-14640, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37615550

ABSTRACT

The recent nanomedicine advancements have introduced a variety of smart nanoparticles in cancer treatment and diagnostics. However, their application to the clinic is still hindered by several challenges related to their biocompatibility, elimination and biodistribution. Here we propose breakable organosilica mesoporous nanoparticles, i.e. nanocages, able to efficiently incorporate cargo molecules and be coated, with different lipid compositions, to enhance their biomimetic behaviour. We exploit the electrostatic interactions between the organosilica surface and the opposite charge of the lipid mixtures in order to obtain an efficient organosilica coverage. The lipid-coated nanocages are proved to have an incredibly high hemocompatibility, significantly increased with respect to pristine nanocages, and excellent colloidal stability and biocompatibility. The cargo-loaded and lipid-coated nanocages are tested and compared in vitro on two different cancer cell lines, demonstrating the key role played by the lipid coating in mediating the internalization of the nanocages, evaluated by the enhanced and rapid cellular uptake. The efficient intracellular delivery of the therapeutic agents is then assured by the destruction of the organosilica, due to the disulfide bridges, introduced into the silica framework, that in reducing media, like the intracellular one, are reduced to thiols causing the breaking of the nanoparticles. The possibility to image and effectively kill cancer cells demonstrates the potentiality of the lipid-coated nanocages as a powerful tool in anticancer research and as a promising smart theranostic platform.


Subject(s)
Biomimetics , Drug Delivery Systems , Tissue Distribution , Biological Transport , Lipids
4.
Nanomaterials (Basel) ; 13(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570567

ABSTRACT

Recent advances in nanomedicine have led to the introduction and subsequent establishment of nanoparticles in cancer treatment and diagnosis. Nonetheless, their application is still hindered by a series of challenges related to their biocompatibility and biodistribution. In this paper, we take inspiration from the recently produced and widely spread COVID vaccines, based on the combinational use of ionizable solid lipid nanoparticles, cholesterol, PEGylated lipids, and neutral lipids able to incorporate mRNA fragments. Here, we focus on the implementation of a lipidic formulation meant to be used as a smart coating of solid-state nanoparticles. The composition of this formulation is finely tuned to ensure efficient and stable shielding of the cargo. The resulting shell is a highly customized tool that enables the possibility of further functionalizations with targeting agents, peptides, antibodies, and fluorescent moieties for future in vitro and in vivo tests and validations. Finally, as a proof of concept, zinc oxide nanoparticles doped with iron and successively coated with this lipidic formulation are tested in a pancreatic cancer cell line, BxPC-3. The results show an astonishing increase in cell viability with respect to the same uncoated nanoparticles. The preliminary results presented here pave the way towards many different therapeutic approaches based on the massive presence of highly biostable and well-tolerated nanoparticles in tumor tissues, such as sonodynamic therapy, photodynamic therapy, hyperthermia, and diagnosis by means of magnetic resonance imaging.

5.
ACS Biomater Sci Eng ; 9(11): 5924-5932, 2023 11 13.
Article in English | MEDLINE | ID: mdl-36535896

ABSTRACT

Extracellular Vesicles (EVs) are the protagonists in cell communication and membrane trafficking, being responsible for the delivery of innumerable biomolecules and signaling moieties. At the moment, they are of paramount interest to researchers, as they naturally show incredibly high efficiency and specificity in delivering their cargo. For these reasons, EVs are employed or inspire the development of nanosized therapeutic delivery systems. In this Perspective, we propose an innovative strategy for the rational design of EV-mimicking vesicles (EV-biomimetics) for theranostic scopes. We first report on the current state-of-the-art use of EVs and their byproducts, such as surface-engineered EVs and EV-hybrids, having an artificial cargo (drug molecule, genetic content, nanoparticles, or dye incorporated in their lumen). Thereafter, we report on the new emerging field of EV-mimicking vesicles for theranostic scopes. We introduce an approach to prepare new, fully artificial EV-biomimetics, with particular attention to maintaining the natural reference lipidic composition. We overview those studies investigating natural EV membranes and the possible strategies to identify key proteins involved in site-selective natural homing, typical of EVs, and their cargo transfer to recipient cells. We propose the use also of molecular simulations, in particular of machine learning models, to approach the problem of lipid organization and self-assembly in natural EVs. We also discuss the beneficial feedback that could emerge combining the experimental tests with atomistic and molecular simulations when designing an EV-biomimetics lipid bilayer. The expectations from both research and industrial fields on fully artificial EV-biomimetics, having the same key functions of natural ones plus new diagnostic or therapeutic functions, could be enormous, as they can greatly expand the nanomedicine applications and guarantee on-demand and scalable production, off-the-shelf storage, high reproducibility of morphological and functional properties, and compliance with regulatory standards.


Subject(s)
Drug Delivery Systems , Extracellular Vesicles , Precision Medicine , Nanomedicine , Biomimetics , Reproducibility of Results , Extracellular Vesicles/metabolism
6.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555455

ABSTRACT

Recent advances in nanomedicine toward cancer treatment have considered exploiting liposomes and extracellular vesicles as effective cargos to deliver therapeutic agents to tumor cells. Meanwhile, solid-state nanoparticles are continuing to attract interest for their great medical potential thanks to their countless properties and possible applications. However, possible drawbacks arising from the use of nanoparticles in nanomedicine, such as the nonspecific uptake of these materials in healthy organs, their aggregation in biological environments and their possible immunogenicity, must be taken into account. Considering these limitations and the intrinsic capability of phospholipidic bilayers to act as a biocompatible shield, their exploitation for effectively encasing solid-state nanoparticles seems a promising strategy to broaden the frontiers of cancer nanomedicine, also providing the possibility to engineer the lipid bilayers to further enhance the therapeutic potential of such nanotools. This work aims to give a comprehensive overview of the latest developments in the use of artificial liposomes and naturally derived extracellular vesicles for the coating of solid-state nanoparticles for cancer treatment, starting from in vitro works until the up-to-date advances and current limitations of these nanopharmaceutics in clinical applications, passing through in vivo and 3D cultures studies.


Subject(s)
Nanoparticles , Neoplasms , Humans , Liposomes/therapeutic use , Nanomedicine , Lipid Bilayers , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...