Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1614: 460739, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31796248

ABSTRACT

The information potential of comprehensive two-dimensional gas chromatography combined with time of flight mass spectrometry (GC × GC-TOFMS) featuring tandem hard (70 eV) and soft (12 eV) electron ionization is here applied to accurately delineate high-quality hazelnuts (Corylus avellana L.) primary metabolome fingerprints. The information provided by tandem signals for untargeted and targeted 2D-peaks is examined and exploited with pattern recognition based on template matching algorithms. EI-MS fragmentation pattern similarity, base-peak m/z values at the two examined energies (i.e., 12 and 70 eV) and response relative sensitivity are adopted to evaluate the complementary nature of signals. As challenging bench test, the hazelnut primary metabolome has a large chemical dimensionality that includes various chemical classes such as mono- and disaccharides, amino acids, low-molecular weight acids, and amines, further complicated by oximation/silylation to obtain volatile derivatives. Tandem ionization provides notable benefits including larger relative ratio of structural informing ions due to limited fragmentation at low energies (12 eV), meaningful spectral dissimilarity between 12 and 70 eV (direct match factor values range 222-783) and, for several analytes, enhanced relative sensitivity at lower energies. The complementary information provided by tandem ionization is exploited by untargeted/targeted (UT) fingerprinting on samples from different cultivars and geographical origins. The responses of 138 UT-peak-regions are explored to delineate informative patterns by univariate and multivariate statistics, providing insights on correlations between known precursors and (key)-aroma compounds and potent odorants. Strong positive correlations between non-volatile precursors and odorants are highlighted with some interesting linear trends for: 3-methylbutanal with isoleucine (R2 0.9284); 2,3-butanedione/2,3-pentanedione with monosaccharides (fructose/glucose derivatives) (R2 0.8543 and 0.8860); 2,5-dimethylpyrazine with alanine (R2 0.8822); and pyrroles (1H-pyrrole, 3-methyl-1H-pyrrole, and 1H-pyrrole-2-carboxaldehyde) with ornithine and alanine derivatives (R2 0.8604). The analytical work-flow provides a solid foundation for a new strategy for hazelnuts quality assessment because aroma potential could be derived from precursors' chemical fingerprints.


Subject(s)
Corylus/chemistry , Food Analysis/methods , Gas Chromatography-Mass Spectrometry , Metabolome , Odorants/analysis , Tandem Mass Spectrometry , Volatile Organic Compounds/analysis
2.
Molecules ; 24(20)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635337

ABSTRACT

Identifying all analytes in a natural product is a daunting challenge, even if fractionated by volatility. In this study, comprehensive two-dimensional gas chromatography/mass spectrometry (GC×GC-MS) was used to investigate relative distribution of volatiles in green, pu-erh tea from leaves collected at two different elevations (1162 m and 1651 m). A total of 317 high and 280 low elevation compounds were detected, many of them known to have sensory and health beneficial properties. The samples were evaluated by two different software. The first, GC Image, used feature-based detection algorithms to identify spectral patterns and peak-regions, leading to tentative identification of 107 compounds. The software produced a composite map illustrating differences in the samples. The second, Ion Analytics, employed spectral deconvolution algorithms to detect target compounds, then subtracted their spectra from the total ion current chromatogram to reveal untargeted compounds. Compound identities were more easily assigned, since chromatogram complexities were reduced. Of the 317 compounds, for example, 34% were positively identified and 42% were tentatively identified, leaving 24% as unknowns. This study demonstrated the targeted/untargeted approach taken simplifies the analysis time for large data sets, leading to a better understanding of the chemistry behind biological phenomena.


Subject(s)
Camellia sinensis/chemistry , Metabolomics/methods , Gas Chromatography-Mass Spectrometry , Plant Leaves/chemistry , Software
3.
Anal Bioanal Chem ; 410(15): 3491-3506, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29313080

ABSTRACT

Within the pattern of volatiles released by food products (volatilome), potent odorants are bio-active compounds that trigger aroma perception by activating a complex array of odor receptors (ORs) in the regio olfactoria. Their informative role is fundamental to select optimal post-harvest and storage conditions and preserve food sensory quality. This study addresses the volatile metabolome from high-quality hazelnuts (Corylus avellana L.) from the Ordu region (Turkey) and Tonda Romana from Italy, and investigates its evolution throughout the production chain (post-harvest, industrial storage, roasting) to find functional correlations between technological strategies and product quality. The volatile metabolome is analyzed by headspace solid-phase microextration combined with comprehensive two-dimensional gas chromatography and mass spectrometry. Dedicated pattern recognition, based on 2D data (targeted fingerprinting), is used to mine analytical outputs, while principal component analysis (PCA), Fisher ratio, hierarchical clustering, and analysis of variance are used to find decision makers among the most informative chemicals. Low-temperature drying (18-20 °C) has a decisive effect on quality; it correlates negatively with bacteria and mold metabolic activity, nut viability, and lipid oxidation products (2-methyl-1-propanol, 3-methyl-1-butanol, 2-ethyl-1-hexanol, 2-octanol, 1-octen-3-ol, hexanal, octanal and (E)-2-heptanal). Protective atmosphere storage (99% N2-1% O2) effectively limits lipid oxidation for 9-12 months after nut harvest. The combination of optimal drying and storage preserves the aroma potential; after roasting at different shelf-lives, key odorants responsible for malty and buttery (2- and 3-methylbutanal, 2,3-butanedione and 2,3-pentanedione), earthy (methylpyrazine, 2-ethyl-5-methyl pyrazine and 3-ethyl-2,5-dimethyl pyrazine) and caramel-like and musty notes (2,5-dimethyl-4-hydroxy-3(2H)-furanone - furaneol and acetyl pyrrole) show no significant variation. Graphical abstract Comprehensive two-dimensional gas chromatography (GC × GC) coupled with mass spectrometric detection captures hazelnut volatiles signatures while advanced fingerprinting approaches based on pattern recognition enable access to a higher level of information.


Subject(s)
Corylus/chemistry , Food Analysis/methods , Gas Chromatography-Mass Spectrometry/methods , Nuts/chemistry , Odorants/analysis , Volatile Organic Compounds/analysis , Aldehydes/analysis , Aldehydes/metabolism , Corylus/metabolism , Food Quality , Furans/analysis , Furans/metabolism , Metabolome , Nuts/metabolism , Pyrazines/analysis , Pyrazines/metabolism , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...