Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(29): 35321-35331, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37432886

ABSTRACT

This paper explores the optical properties of an exfoliated MoSe2 monolayer implanted with Cr+ ions, accelerated to 25 eV. Photoluminescence of the implanted MoSe2 reveals an emission line from Cr-related defects that is present only under weak electron doping. Unlike band-to-band transition, the Cr-introduced emission is characterized by nonzero activation energy, long lifetimes, and weak response to the magnetic field. To rationalize the experimental results and get insights into the atomic structure of the defects, we modeled the Cr-ion irradiation process using ab initio molecular dynamics simulations followed by the electronic structure calculations of the system with defects. The experimental and theoretical results suggest that the recombination of electrons on the acceptors, which could be introduced by the Cr implantation-induced defects, with the valence band holes is the most likely origin of the low-energy emission. Our results demonstrate the potential of low-energy ion implantation as a tool to tailor the properties of two-dimensional (2D) materials by doping.

2.
J Microsc ; 279(3): 256-264, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32400884

ABSTRACT

This paper takes a fundamental view of the electron energy loss spectra of monolayer and few layer MoS2 . The dielectric function of monolayer MoS2 is compared to the experimental spectra to give clear criteria for the nature of different signals. Kramers-Krönig analysis allows a direct extraction of the dielectric function from the experimental data. However this analysis is sensitive to slight changes in the normalisation step of the data pretreatment. Density functional theory provides simulations of the dielectric function for comparison and validation of experimental findings. Simulated and experimental spectra are compared to isolate the π and π + σ surface plasmon modes in monolayer MoS2 . Single-particle excitations obscure the plasmons in the monolayer spectrum and momentum resolved measurements give indication of indirect interband transitions that are excited due to the large convergence and collection angles used in the experiment. LAY DESCRIPTION: Two-dimensional materials offer a path forward for smaller and more efficient devices. Their optical and electronic properties give way to beat the limits set in place by Moore's Law. Plasmon are the collective oscillations of electrons and can confine light to dimensions much smaller than its wavelength. In this work we explore the plasmonic properties of MoS2 , a representational candidate from a family of 2D materials known as transition metal dichalcogenides. High resolution electron microscopy and spectroscopy provide insights in the plasmonic properties of MoS2 down to an atomic scale. Experimental results show the relationship between plasmons and interband transitions in the electron energy loss spectrum. Density functional theory provides a theoretical support for the experimental findings and provides commentary on the fundamental underlying physics.

3.
Ultramicroscopy ; 176: 63-73, 2017 05.
Article in English | MEDLINE | ID: mdl-28139341

ABSTRACT

We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams.

SELECTION OF CITATIONS
SEARCH DETAIL