Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cells ; 10(10)2021 09 26.
Article in English | MEDLINE | ID: mdl-34685524

ABSTRACT

Mechanical stress in tree roots induces the production of reaction wood (RW) and the formation of new branch roots, both functioning to avoid anchorage failure and limb damage. The vascular cambium (VC) is the factor responsible for the onset of these responses as shown by their occurrence when all primary tissues and the root tips are removed. The data presented confirm that the VC is able to evaluate both the direction and magnitude of the mechanical forces experienced before coordinating the most fitting responses along the root axis whenever and wherever these are necessary. The coordination of these responses requires intense crosstalk between meristematic cells of the VC which may be very distant from the place where the mechanical stress is first detected. Signaling could be facilitated through plasmodesmata between meristematic cells. The mechanism of RW production also seems to be well conserved in the stem and this fact suggests that the VC could behave as a single structure spread along the plant body axis as a means to control the relationship between the plant and its environment. The observation that there are numerous morphological and functional similarities between different meristems and that some important regulatory mechanisms of meristem activity, such as homeostasis, are common to several meristems, supports the hypothesis that not only the VC but all apical, primary and secondary meristems present in the plant body behave as a single interconnected structure. We propose to name this structure "meristematic connectome" given the possibility that the sequence of meristems from root apex to shoot apex could represent a pluricellular network that facilitates long-distance signaling in the plant body. The possibility that the "meristematic connectome" could act as a single structure active in adjusting the plant body to its surrounding environment throughout the life of a plant is now proposed.


Subject(s)
Cambium/metabolism , Meristem/cytology , Plant Proteins/metabolism , Connectome/methods , Environment , Plants
2.
Plant Physiol ; 163(3): 1254-65, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24047863

ABSTRACT

To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine (Vitis berlandieri × Vitis rupestris) fine roots from the tip to secondary growth zones. Our characterization included the localization of suberized structures and aquaporin gene expression and the determination of hydraulic conductivity (Lpr) and aquaporin protein activity (via chemical inhibition) in different root zones under both osmotic and hydrostatic pressure gradients. Tissue-specific messenger RNA levels of the plasma membrane aquaporin isogenes (VvPIPs) were quantified using laser-capture microdissection and quantitative polymerase chain reaction. Our results highlight dramatic changes in structure and function along the length of grapevine fine roots. Although the root tip lacked suberization altogether, a suberized exodermis and endodermis developed in the maturation zone, which gave way to the secondary growth zone containing a multilayer suberized periderm. Longitudinally, VvPIP isogenes exhibited strong peaks of expression in the root tip that decreased precipitously along the root length in a pattern similar to Arabidopsis (Arabidopsis thaliana) roots. In the radial orientation, expression was always greatest in interior tissues (i.e. stele, endodermis, and/or vascular tissues) for all root zones. High Lpr and aquaporin protein activity were associated with peak VvPIP expression levels in the root tip. This suggests that aquaporins play a limited role in controlling water uptake in secondary growth zones, which contradicts existing theoretical predictions. Despite having significantly lower Lpr, woody roots can constitute the vast majority of the root system surface area in mature vines and thus provide for significant water uptake potential.


Subject(s)
Aquaporins/metabolism , Plant Roots/metabolism , Vitis/metabolism , Water/metabolism , Aquaporins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Biological Transport , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Plant Roots/anatomy & histology , Plant Roots/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Vitis/anatomy & histology , Vitis/genetics
3.
Ann Bot ; 110(2): 201-4, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966495

ABSTRACT

This special issue is dedicated to root biologists past and present who have been exploring all aspects of root structure and function with an extensive publication record going over 100 years. The content of the Special Issue on Root Biology covers a wide scale of contributions, spanning interactions of roots with microorganisms in the rhizosphere, the anatomy of root cells and tissues, the subcellular components of root cells, and aspects of metal accumulation and stresses on root function and structure. We have organized the papers into three topic categories: (1) root ecology, interactions with microbes, root architecture and the rhizosphere; (2) experimental root biology, root structure and physiology; and (3) applications of new technology to study root biology. Finally, we will speculate on root research for the future.


Subject(s)
Plant Roots/physiology , Research/trends
4.
Ann Bot ; 108(1): 73-85, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21546428

ABSTRACT

BACKGROUND AND AIMS: The bacterium Xylella fastidiosa (Xf), responsible for Pierce's disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf. METHODS: Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant. KEY RESULTS: There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant 'Sylvaner' had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement. CONCLUSIONS: Stem--leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are discussed.


Subject(s)
Vitis/anatomy & histology , Vitis/microbiology , Xylella/physiology , Xylem/anatomy & histology , Xylem/microbiology , Air , Host Specificity , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity , Plant Leaves/anatomy & histology , Plant Leaves/microbiology , Plant Shoots/anatomy & histology , Plant Shoots/microbiology , Vitis/immunology , Vitis/physiology , Xylella/growth & development , Xylem/immunology , Xylem/physiology
5.
Ann Bot ; 107(7): 1213-22, 2011 May.
Article in English | MEDLINE | ID: mdl-21118839

ABSTRACT

BACKGROUND: The structure of roots has been studied for many years, but despite their importance to the growth and well-being of plants, most researchers tend to ignore them. This is unfortunate, because their simple body plan makes it possible to study complex developmental pathways without the complications sometimes found in the shoot. In this illustrated essay, my objective is to describe the body plan of the root and the root apical meristem (RAM) and point out the control points where differentiation and cell cycle decisions are made. Hopefully this outline will assist plant biologists in identifying the structural context for their observations. SCOPE AND CONCLUSIONS: This short paper outlines the types of RAM, i.e. basic-open, intermediate-open and closed, shows how they are similar and different, and makes the point that the structure and shape of the RAM are not static, but changes in shape, size and organization occur depending on root growth rate and development stage. RAMs with a closed organization lose their outer root cap layers in sheets of dead cells, while those with an open organization release living border cells from the outer surfaces of the root cap. This observation suggests a possible difference in the mechanisms whereby roots with different RAM types communicate with soil-borne micro-organisms. The root body is organized in cylinders, sectors (xylem and phloem in the vascular cylinder), cell files, packets and modules, and individual cells. The differentiation in these root development units is regulated at control points where genetic regulation is needed, and the location of these tissue-specific control points can be modulated as a function of root growth rate. In Arabidopsis thaliana the epidermis and peripheral root cap develop through a highly regulated series of steps starting with a periclinal division of an initial cell, the root cap/protoderm (RCP) initial. The derivative cells from the RCP initial divide into two cells, the inner cell divides again to renew the RCP and the other cell divides through four cycles to form 16 epidermal cells in a packet; the outer cell divides through four cycles to form the 16 cells making up the peripheral root cap packet. Together, the epidermal packet and the peripheral root cap packet make up a module of cells which are clonally related.


Subject(s)
Magnoliopsida/anatomy & histology , Magnoliopsida/cytology , Plant Roots/anatomy & histology , Plant Roots/cytology , Meristem/anatomy & histology , Meristem/cytology , Plant Roots/growth & development
6.
J Exp Bot ; 59(8): 1987-96, 2008.
Article in English | MEDLINE | ID: mdl-18440931

ABSTRACT

During the development of many fleshy fruits, water flow becomes progressively more phloemic and less xylemic. In grape (Vitis vinifera L.), the current hypothesis to explain this change is that the tracheary elements of the peripheral xylem break as a result of berry growth, rendering the xylem structurally discontinuous and hence non-functional. Recent work, however, has shown via apoplastic dye movement through the xylem of post-veraison berries that the xylem should remain structurally intact throughout berry development. To corroborate this, peripheral xylem structure in developing Chardonnay berries was investigated via maceration and plastic sectioning. Macerations revealed that, contrary to current belief, the xylem was comprised mostly of vessels with few tracheids. In cross-section, the tracheary elements of the vascular bundles formed almost parallel radial files, with later formed elements toward the epidermis and earlier formed elements toward the centre of the berry. Most tracheary elements remained intact throughout berry maturation, consistent with recent reports of vascular dye movement in post-veraison berries.


Subject(s)
Fruit/anatomy & histology , Fruit/growth & development , Vitis/anatomy & histology , Vitis/growth & development , Xylem/anatomy & histology , Xylem/growth & development , Biological Transport , Coloring Agents/metabolism , Fruit/metabolism , Microscopy, Electron, Scanning , Models, Biological , Vitis/metabolism , Xylem/metabolism , Xylem/ultrastructure
7.
J Exp Bot ; 59(8): 1997-2007, 2008.
Article in English | MEDLINE | ID: mdl-18440930

ABSTRACT

It has been hypothesized that the substantial reductions in xylemic water flow occurring at veraison are due to physical disruption (breaking) of the xylem as a result of renewed berry growth. In a companion paper, evidence was presented that the vast majority of xylem tracheary elements remained intact despite the growth of the berry, and it was proposed that existing tracheary elements stretch to accommodate growth and that additional elements may also differentiate after veraison. Measurements of the intergyre distance of tracheary elements in macerated tissue were used to test for stretching, and the numbers of tracheary elements per vascular bundle and of branch points of the peripheral xylem network were analysed to test for continued differentiation from 18 to 120 d after anthesis in Chardonnay berries. The distance between the epidermis and the vasculature increased substantially from pre- to post-veraison, potentially increasing the amount of skin available for analysis of compounds important for winemaking. Tracheary elements continued to differentiate within the existing vascular bundles throughout berry development. Additional vascular bundles also appeared until after veraison, thereby increasing the complexity of the peripheral vascular network. The results also confirmed that tracheary elements stretched by approximately 20%, but this was not as much as that predicted based on the growth of the vascular diameter (40%). These results complete a comprehensive evaluation of grape berry peripheral xylem during its development and show that tracheary development continues further into berry maturation than previously thought.


Subject(s)
Fruit/anatomy & histology , Fruit/growth & development , Vitis/anatomy & histology , Vitis/growth & development , Xylem/anatomy & histology , Xylem/growth & development , Fruit/chemistry , Models, Biological , Vitis/chemistry , Xylem/chemistry , Xylem/cytology
8.
Am J Bot ; 95(12): 1498-505, 2008 Dec.
Article in English | MEDLINE | ID: mdl-21628157

ABSTRACT

Vascular occlusion in xylem conduits is a common response to environmental stresses, and plant species are recognized as primarily tylose-forming or gel-forming. These stresses occur throughout the year, but there is little information on the wound responses throughout the year and in growing and dormant tissues. Wound-induced vascular occlusions were evaluated by type (tylose or gel), temporal progress, and spatial distribution for grape stems pruned in four seasons through an entire year. Tyloses were formed predominantly in summer and gels in winter. Cytohistological analyses indicated that wound-induced gels were pectin-rich. Both gel formation and tylose development were complete within 7 d and 10 mm from the cut regardless of the season of the wounding. Most vessels were affected by wounding, but a higher fraction of vessels developed occlusions in summer and autumn (over 80%) than in winter and spring (about 60%). The study is the first to show a single species is capable of producing primarily either tyloses or gels and that the type of wound-induced occlusion is dependent upon the season in which wounding occurs. Winter conditions limit the wound response to reversible gel formation that may contribute to refilling of embolized vessels in the spring.

9.
Plant Physiol ; 145(4): 1629-36, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17921344

ABSTRACT

The pruning of actively growing grapevines (Vitis vinifera) resulted in xylem vessel embolisms and a stimulation of tylose formation in the vessels below the pruning wound. Pruning was also followed by a 10-fold increase in the concentration of ethylene at the cut surface. When the pruning cut was made under water and maintained in water, embolisms were prevented, but there was no reduction in the formation of tyloses or the accumulation of ethylene. Treatment of the stems with inhibitors of ethylene biosynthesis (aminoethoxyvinylglycine) and/or action (silver thiosulfate) delayed and greatly reduced the formation of tyloses in xylem tissue and the size and number of those that formed in individual vessels. Our data are consistent with the hypotheses that wound ethylene production is the cause of tylose formation and that embolisms in vessels are not directly required for wound-induced tylosis in pruned grapevines. The possible role of ethylene in the formation of tyloses in response to other stresses and during development, maturation, and senescence is discussed.


Subject(s)
Air , Ethylenes/metabolism , Plant Stems/growth & development , Vitis/growth & development , Xylem/growth & development , Ethylenes/antagonists & inhibitors , Glycine/analogs & derivatives , Glycine/pharmacology , Plant Stems/drug effects , Plant Stems/metabolism , Thiosulfates/pharmacology , Vitis/drug effects , Vitis/metabolism , Xylem/drug effects
10.
Ann Bot ; 98(3): 483-94, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16790469

ABSTRACT

BACKGROUND AND AIMS: Bacterial leaf scorch occurring in a number of economically important plants is caused by the xylem-limited bacterium Xylella fastidiosa (Xf). In grapevine, Xf systemic infection causes Pierce's disease and is lethal. Traditional dogma is that Xf movement between vessels requires the digestion of inter-vessel pit membranes. However, Yersinia enterocolitica (Ye) (a bacterium found in animals) and fluorescent beads moved rapidly within grapevine xylem from stem into leaf lamina, suggesting open conduits consisting of long, branched xylem vessels for passive movement. This study builds on and expands previous observations on the nature of these conduits and how they affect Xf movement. METHODS: Air, latex paint and green fluorescence protein (GFP)-Xf were loaded into leaves and followed to confirm and identify these conduits. Leaf xylem anatomy was studied to determine the basis for the free and sometimes restricted movement of Ye, beads, air, paint and GFP-Xf into the lamina. KEY RESULTS: Reverse loading experiments demonstrated that long, branched xylem vessels occurred exclusively in primary xylem. They were observed in the stem for three internodes before diverging into mature leaves. However, this stem-leaf connection was an age-dependent character and was absent for the first 10-12 leaves basal to the apical meristem. Free movement in leaf blade xylem was cell-type specific with vessels facilitating movement in the body of the blade and tracheids near the leaf margin. Air, latex paint and GFP-Xf all moved about 50-60% of the leaf length. GFP-Xf was never observed close to the leaf margin. CONCLUSIONS: The open vessels of the primary xylem offered unimpeded long distance pathways bridging stem to leaves, possibly facilitating the spread of bacterial pathogens in planta. GFP-Xf never reached the leaf margins where scorching appeared, suggesting a signal targeting specific cells or a toxic build-up at hydathodes.


Subject(s)
Plant Shoots/microbiology , Vitis/microbiology , Xylella/growth & development , Air , Green Fluorescent Proteins , Paint , Plant Leaves/anatomy & histology , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Stems/physiology , Vitis/anatomy & histology , Vitis/metabolism , Water/metabolism , Xylella/metabolism
11.
Ann Bot ; 97(5): 917-23, 2006 May.
Article in English | MEDLINE | ID: mdl-16488922

ABSTRACT

BACKGROUND AND AIMS: The root apical meristems (RAM) of flowering plant roots are organized into recognizable pattern types. At present, there are no known ecological or physiological benefits to having one RAM organization type over another. Although there are phylogenetic distribution patterns in plant groups, the possible evolutionary advantages of different RAM organization patterns are not understood. Root caps of many flowering plant roots are known to release living border cells into the rhizosphere, where the cells are believed to have the capacity to alter conditions in the soil and to interact with soil micro-organisms. Consequently, high rates of border cell production may have the potential to benefit plant growth and development greatly, and to provide a selective advantage in certain soil environments. This study reports the use of several approaches to elucidate the anatomical and developmental relationships between RAM organization and border cell production. METHODS: RAM types from many species were compared with numbers of border cells released in those species. In addition, other species were grown, fixed and sectioned to verify their organization type and capacity to produce border cells. Root tips were examined microscopically to characterize their pattern and some were stained to determine the viability of root cap cells. KEY RESULTS: The first report of a correlation between RAM organization type and the production and release of border cells is provided: species exhibiting open RAM organization produce significantly more border cells than species exhibiting closed apical organization. Roots with closed apical organization release peripheral root cap cells in sheets or large groups of dead cells, whereas root caps with open organization release individual living border cells. CONCLUSIONS: This study, the first to document a relationship between RAM organization, root cap behaviour and a possible ecological benefit to the plant, may yield a framework to examine the evolutionary causes for the diversification of RAM organization types across taxa.


Subject(s)
Magnoliopsida/physiology , Plant Root Cap/physiology , Cucurbitaceae/physiology , Fabaceae/physiology , Magnoliopsida/ultrastructure , Microscopy, Electron, Scanning , Plant Root Cap/ultrastructure , Solanaceae/physiology
12.
Am J Bot ; 93(11): 1567-76, 2006 Nov.
Article in English | MEDLINE | ID: mdl-21642102

ABSTRACT

Tyloses form in xylem vessels in response to various environmental stimuli, but little is known of the kinetics or regulation of their development. Preliminary investigations indicated that wounds seal quickly with tyloses after pruning of grapevine shoots. In this study, tylose development was analyzed qualitatively and quantitatively at different depths and times from pruning cuts along current-year shoots of grapevines at basal, middle, and apical stem regions. Tyloses developed simultaneously within a single vessel but much separated in time among vessels. Pruning caused prodigious tylosis in vessels of grape stems, extending to approximately 1 cm deep and to 7 d after wounding, but about half of the vessels did not become completely occluded. The fraction of vessels forming tyloses was greatest in basal (85%) and least in apical (50%) regions. The depth of maximum density of tyloses was 4 mm from the cut in the basal region and 2 mm from the cut in the middle and apical regions. Tylose development was faster in the basal and middle than in the apical region. The pattern of tylose development is discussed in the context of wound repair and pathogen movement in grapevines.

13.
Am J Bot ; 93(4): 497-504, 2006 Apr.
Article in English | MEDLINE | ID: mdl-21646209

ABSTRACT

Xylem-dwelling pathogens become systemic, suggesting that microorganisms move efficiently in the xylem. To better understand xylem pathways and how bacteria move within the xylem, vessel connectivity between stems and leaves of Vitis vinifera cv. Chardonnay and Muscadinia rotundifolia cv. Cowart was studied. Three methods were used: (1) the light-producing bacterium, Yersinia enterocolitica, (Ye) strain GY5232 was loaded into petioles and followed using X-ray film, (2) fluorescent beads were loaded and followed by microscopy, and (3) low-pressure air was pumped into leaves and extruded bubbles from cuts in submerged leaves were followed. Bacteria, beads, and air moved through long and branched xylem vessels from the petiole into the veins in leaves of both varieties. From the stem, bacteria and air traveled into primary and secondary veins of leaves one, two, and three nodes above the loading point of the bacteria or air. Particles and air could move unimpeded through single xylem vessels or multiple vessels (conduits) connected possibly through broken pit membranes from within the stem axis into leaf blades. Bacteria were also able to move long distances within minutes from stem to leaf passively without having to cross pit membranes. Such complex, open xylem conduits have not been well documented before; these findings will help elucidate mechanisms involved in the systemic spread of pathogens.

14.
Plant Dis ; 89(6): 543-548, 2005 Jun.
Article in English | MEDLINE | ID: mdl-30795376

ABSTRACT

Symptoms of Pierce's disease were studied in an anatomical context from infected grapevines (Vitis species) collected from field sites within Napa Valley, CA. Two symptoms, green islands and matchsticks, are reported in this study. Green islands formed as a result of incomplete initiation of the phellogen. In regions of the stem where a phellogen and subsequent periderm arose, immediately exterior tissue was cut off, causing it to brown. In regions of the stem where no periderm is formed, the exterior tissues remained green. Consequently, the stem is mottled with both green living epidermis and brown dying epidermis as determined by the presence or absence of an underlying periderm. Matchsticks formed when the leaf lamina separated from the petiole, and the petiole remained attached to the stem. Lamina broke off from the petioles consistently in a fracture zone where xylem from the petiole anastomoses into the five major veins of the leaf. No separation layer was found to explain this pseudoabscission.

15.
Evolution ; 58(8): 1705-29, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15446425

ABSTRACT

Genome size has been suggested to be a fundamental biological attribute in determining life-history traits in many groups of organisms. We examined the relationships between pine genome sizes and pine phylogeny, environmental factors (latitude, elevation, annual rainfall), and biological traits (latitudinal and elevational ranges, seed mass, minimum generation time, interval between large seed crops, seed dispersal mode, relative growth rate, measures of potential and actual invasiveness, and level of rarity). Genome sizes were determined for 60 pine taxa and then combined with published values to make a dataset encompassing 85 species, or 70% of species in the genus. Supertrees were constructed using 20 published source phylogenies. Ancestral genome size was estimated as 32 pg. Genome size has apparently remained stable or increased over evolutionary time in subgenus Strobus, while it has decreased in most subsections in subgenus Pinus. We analyzed relationships between genome size and life-history variables using cross-species correlations and phylogenetically independent contrasts derived from supertree constructions. The generally assumed positive relation between genome size and minimum generation time could not be confirmed in phylogenetically controlled analyses. We found that the strongest correlation was between genome size and seed mass. Because the growth quantities specific leaf area and leaf area ratio (and to a lesser extent relative growth rate) are strongly negatively related to seed mass, they were also negatively correlated with genome size. Northern latitudinal limit was negatively correlated with genome size. Invasiveness, particularly of wind-dispersed species, was negatively associated with both genome size and seed mass. Seed mass and its relationships with seed number, dispersal mode, and growth rate contribute greatly to the differences in life-history strategies of pines. Many life-history patterns are therefore indirectly, but consistently, associated with genome size.


Subject(s)
Environment , Evolution, Molecular , Genome, Plant , Phylogeny , Pinus/genetics , Seeds/physiology , Analysis of Variance , Climate , Geography , Pinus/growth & development , Regression Analysis , Reproduction/genetics , Reproduction/physiology
16.
Am Nat ; 159(4): 396-419, 2002 Apr.
Article in English | MEDLINE | ID: mdl-18707424

ABSTRACT

We studied 29 pine (Pinus) species to test the hypothesis that invasive species in disturbed habitats have distinct attributes. Seedling relative growth rate (RGR) and measures of invasiveness were positively associated across species as well as within phylogenetically independent contrasts. High RGR, small seed masses, and short generation times characterize pine species that are successful invaders in disturbed habitats. Discriminant analysis and logistic regression revealed that RGR was the most significant factor among these life-history traits separating invasive and noninvasive species. We also explored the causes of differences in RGR among invasive and noninvasive species. While net assimilation rate, leaf mass ratio, and specific leaf area (SLA) were all found to be contributing positively to RGR, SLA was found to be the main component responsible for differences in RGR between invasive and noninvasive pines. We investigated differences in SLA further by studying leaf anatomy, leaf density, and leaf thickness. We also evaluated relative leaf production rate as an important aspect of SLA. We proposed a hypothetical causal network of all relevant variables.

17.
Am J Bot ; 89(6): 908-20, 2002 Jun.
Article in English | MEDLINE | ID: mdl-21665690

ABSTRACT

Developmental and physiological studies of roots are frequently limited to a post-germination stage. In Arabidopsis, a developmental change in the root meristem architecture during plant ontogenesis has not previously been studied and is addressed presently. Arabidopsis thaliana have closed root apical organization, in which all cell file lineages connect directly to one of three distinct initial tiers. The root meristem organization is dynamic and changes as the root ages from 1 to 4 wk post-germination. During the ontogeny of the root, the number of cells within the root apical meristem (RAM) increases and then decreases due to changes in the number of cortical layers and number of cell files within a central cylinder. The architecture of the initial tiers also changes as the root meristem ages. Included in the RAM's ontogeny is a pattern associated with the periclinal divisions that give rise to the middle cortex and endodermis; the three-dimensional arrangement of periclinally dividing derivative cells resembles one gyre of a helix. Four- or 5-wk-old roots exhibit a disorganized array of vacuolated initial cells that are a manifestation of the determinate nature of the meristem. Vascular cambium is formed via coordinated divisions of vascular parenchyma and pericycle cells. The phellogen is the last meristem to complete its development, and it is derived from pericycle cells that delineate the outer boundary of the root.

18.
Am J Bot ; 75(5): 615-633, 1988 May.
Article in English | MEDLINE | ID: mdl-30139092

ABSTRACT

Forty-nine taxa of Sansevieria were examined to provide the first detailed description of leaf anatomy in the genus, as well as to determine the cellular organization of the water-storage tissue present in the central mesophyll of all leaves. Leaf form ranges from flat through cylindrical, with varying degrees of xeromorphic characteristics, including cuticle thickness, stomatal depth, fiber content, and fiber cell development. Mesophyll in all species is divided into an outer region of chlorenchyma and a central region of colorless water-storage tissue. The water-storage tissue comprises a highly branched 3-dimensional network of living cells, among which are many dead, thin-walled water-storage cells. Species with more extreme xeromorphic characteristics tend to have a greater percentage of their water-storage tissue composed of water-storage cells. In 28 taxa, water-storage cells have spiral or reticulate wall bands. These taxa tend to be more xeromorphic. The wall bands may serve an important structural role in drought tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL
...