Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Biol Aujourdhui ; 216(1-2): 1-6, 2022.
Article in French | MEDLINE | ID: mdl-35876516

ABSTRACT

Discovery of insulin. If the symptoms of diabetes have been known since Antiquity, it is at the end of the 19th century that several investigators searched for the active substance of the pancreas and endeavoured to produce extracts that lowered blood and urine glucose and decreased polyuria in pancreatectomized dogs. The breakthrough came 100 years ago when the team of Frederick Banting, Charles Best and James Collip, working in the Department of Physiology, headed by John MacLeod at the University of Toronto, managed to obtain pancreatic extracts that could be used to treat patients and rescue them from the edge of death by starvation, the only treatment then available. This achievement was quickly recognized by the Nobel Prize in Physiology or Medicine to Banting and MacLeod in 1923. The discovery has had important scientific, industrial and clinical developments still efficient nowadays.


Title: La découverte de l'insuline 1921­1922 : un saut dans la recherche biomédicale. Abstract: Si les symptômes du diabète ont été décrits depuis l'Antiquité et caractérisés par la présence de sucre dans les urines et une soif intense, ce n'est qu'à la fin du xixe siècle que les travaux de plusieurs équipes aboutissent à rechercher la substance active de la sécrétion interne du pancréas dans des extraits susceptibles de diminuer le glucose dans le sang et les urines chez le chien diabétique. C'est à l'Université de Toronto, au Canada, il y a 100 ans, entre 1921 et 1922, que Frederick Banting, Charles Best et James Collip, travaillant dans le département de physiologie dirigé par John MacLeod, obtiennent des extraits pancréatiques suffisamment purifiés qui permettent de traiter de jeunes patients diabétiques. Cette découverte de l'insuline est très vite reconnue et saluée par l'attribution du Prix Nobel de Physiologie ou Médecine en 1923 à Frederick Banting et John MacLeod. Cette découverte a eu d'importantes retombées scientifiques, industrielles et cliniques, toujours d'actualité.


Subject(s)
Biomedical Research , Diabetes Mellitus , Animals , Diabetes Mellitus/drug therapy , Diabetes Mellitus/history , Dogs , History, 20th Century , Insulin/history , Insulin/therapeutic use , Nobel Prize
2.
Biol Aujourdhui ; 215(1-2): 59-62, 2021.
Article in French | MEDLINE | ID: mdl-34397375
3.
Endocr Rev ; 42(5): 503-527, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34273145

ABSTRACT

Diabetes has been known since antiquity. We present here a historical perspective on the concepts and ideas regarding the physiopathology of the disease, on the progressive focus on the pancreas, in particular on the islets discovered by Langerhans in 1869, leading to the iconic experiment of Minkowski and von Mering in 1889 showing that pancreatectomy in a dog induced polyuria and diabetes mellitus. Subsequently, multiple investigators searched for the active substance of the pancreas and some managed to produce extracts that lowered blood glucose and decreased polyuria in pancreatectomized dogs but were too toxic to be administered to patients. The breakthrough came 100 years ago, when the team of Frederick Banting, Charles Best, and James Collip working in the Department of Physiology headed by John Macleod at the University of Toronto managed to obtain pancreatic extracts that could be used to treat patients and rescue them from the edge of death by starvation, the only treatment then available. This achievement was quickly recognized by the Nobel Prize in Physiology or Medicine to Banting and Macleod in 1923. At 32, Banting remains the youngest awardee of this prize. Here we discuss the work that led to the discovery and its main breakthroughs, the human characters involved in an increasingly dysfunctional relationship, the controversies that followed the Nobel Prize, and the debate as to who actually "discovered" insulin. We also discuss the early commercial development and progress in insulin crystallization in the decade or so following the Nobel Prize.


Subject(s)
Diabetes Mellitus , Insulin , Animals , Blood Glucose , Dogs , Female , History, 20th Century , Humans , Male , Nobel Prize , Polyuria
4.
Biomed Pharmacother ; 132: 110794, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33035833

ABSTRACT

Corneal pain is considered to be a core symptom of ocular surface disruption and inflammation. The management of this debilitating condition is still a therapeutic challenge. Recent evidence supports a role of the opioid system in the management of corneal nociception. However, the functional involvement of the mu opioid receptor (MOR) underlying this analgesic effect is not known. We first investigated the expression of the MOR in corneal nerve fibers and trigeminal ganglion (TG) neurons in control mice and a mouse model of corneal inflammatory pain. We then evaluated the anti-nociceptive and electrophysiological effects of DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol] enkephalin), a MOR-selective ligand. MOR immunoreactivity was detected in corneal nerve fibers and primary afferent neurons of the ophthalmic branch of the TG of naive mice. MOR expression was significantly higher in both structures under conditions of inflammatory corneal pain. Topical ocular administration of DAMGO strongly reduced both the mechanical (von Frey) and chemical (capsaicin) corneal hypersensitivity associated with inflammatory ocular pain. Repeated instillations of DAMGO also markedly reversed the elevated spontaneous activity of the ciliary nerve and responsiveness of corneal polymodal nociceptors that were observed in mice with corneal pain. Finally, these DAMGO-induced behavioral and electrophysiological responses were totally blunted by the topical application of naloxone methiodide, an opioid receptor antagonist. Overall, these results provide evidence that topical pharmacological MOR activation may constitute a therapeutic target for the treatment of corneal pain and improve corneal nerve function to alleviate chronic pain.


Subject(s)
Analgesics, Opioid/pharmacology , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Eye Pain/drug therapy , Receptors, Opioid, mu/agonists , Administration, Ophthalmic , Analgesics, Opioid/administration & dosage , Animals , Cornea/drug effects , Cornea/innervation , Cornea/pathology , Corneal Diseases/drug therapy , Corneal Diseases/pathology , Disease Models, Animal , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage , Inflammation/drug therapy , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL
5.
J Neuroinflammation ; 16(1): 268, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31847868

ABSTRACT

BACKGROUND: Dry eye disease (DED) is a multifactorial disease associated with ocular surface inflammation, pain, and nerve abnormalities. We studied the peripheral and central neuroinflammatory responses that occur during persistent DED using molecular, cellular, behavioral, and electrophysiological approaches. METHODS: A mouse model of DED was obtained by unilateral excision of the extraorbital lachrymal gland (ELG) and Harderian gland (HG) of adult female C57BL/6 mice. In vivo tests were conducted at 7, 14, and 21 days (d) after surgery. Tear production was measured by a phenol red test and corneal alterations and inflammation were assessed by fluorescein staining and in vivo confocal microscopy. Corneal nerve morphology was evaluated by nerve staining. Mechanical corneal sensitivity was monitored using von Frey filaments. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous corneal nerve activity. RT-qPCR and immunostaining were used to determine RNA and protein levels at d21. RESULTS: We observed a marked reduction of tear production and the development of corneal inflammation at d7, d14, and d21 post-surgery in DED animals. Chronic DE induced a reduction of intraepithelial corneal nerve terminals. Behavioral and electrophysiological studies showed that the DED animals developed time-dependent mechanical corneal hypersensitivity accompanied by increased spontaneous ciliary nerve fiber electrical activity. Consistent with these findings, DED mice exhibited central presynaptic plasticity, demonstrated by a higher Piccolo immunoreactivity in the ipsilateral trigeminal brainstem sensory complex (TBSC). At d21 post-surgery, mRNA levels of pro-inflammatory (IL-6 and IL-1ß), astrocyte (GFAP), and oxidative (iNOS2 and NOX4) markers increased significantly in the ipsilateral trigeminal ganglion (TG). This correlated with an increase in Iba1, GFAP, and ATF3 immunostaining in the ipsilateral TG of DED animals. Furthermore, pro-inflammatory cytokines (IL-6, TNFα, IL-1ß, and CCL2), iNOS2, neuronal (ATF3 and FOS), and microglial (CD68 and Itgam) markers were also upregulated in the TBSC of DED animals at d21, along with increased immunoreactivity against GFAP and Iba1. CONCLUSIONS: Overall, these data highlight peripheral sensitization and neuroinflammatory responses that participate in the development and maintenance of dry eye-related pain. This model may be useful to identify new analgesic molecules to alleviate ocular pain.


Subject(s)
Cornea/physiopathology , Dry Eye Syndromes/physiopathology , Hyperalgesia/physiopathology , Neuronal Plasticity/physiology , Trigeminal Nuclei/physiopathology , Animals , Chronic Disease , Female , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Trigeminal Ganglion/physiopathology
7.
J Neural Transm (Vienna) ; 126(4): 367-375, 2019 04.
Article in English | MEDLINE | ID: mdl-30206700

ABSTRACT

Working on catecholamine systems for years, the neuropharmacologist Arvid Carlsson has made a number of important and pioneering discoveries, which have highlighted the key role of these neuronal and peripheral neurotransmitters in brain functions and adrenal regulations. Since then, major advances have been made concerning the distribution of the catecholaminergic systems in particular by studying their rate-limiting enzyme, tyrosine hydroxylase (TH). Recently new methods of tissue transparency coupled with in toto immununostaining and three-dimensional (3D) imaging technologies allow to precisely map TH immunoreactive pathways in the mouse brain and adrenal glands. High magnification images and movies obtained with combined technologies (iDISCO+ and light-sheet microscopy) are presented in this review dedicated to the pioneer work of Arvid Carlsson and his collaborators.


Subject(s)
Adrenal Glands/enzymology , Brain/enzymology , Histocytological Preparation Techniques/methods , Immunohistochemistry/methods , Tyrosine 3-Monooxygenase/metabolism , Animals , Image Processing, Computer-Assisted/methods , Mice , Mice, Inbred C57BL
8.
J Neural Transm (Vienna) ; 126(5): 695, 2019 May.
Article in English | MEDLINE | ID: mdl-30448875

ABSTRACT

Unfortunately, the given name and family name of the fourth author was incorrectly tagged in the xml data, therefore it is abbreviated wrongly as ''Goazigo AR'' in Pubmed. The correct given name is Annabelle and family name is Reaux­Le Goazigo.

9.
Biol Aujourdhui ; 212(1-2): 1-11, 2018.
Article in French | MEDLINE | ID: mdl-30362450

ABSTRACT

Dry eye disease (DED) is a common chronic condition with multifactorial etiologies that is increasing in prevalence worldwide, up to 20% in the elderly. The economic burden and impact of DED on vision, quality of life, work productivity, psychological and physical impact of pain, are considerable. Chronic ocular pain is the most common symptom of DED and there is currently no topical ocular analgesic therapy available to treat this debilitating disease. Eye pain can be perceived as itch, irritation, dryness, grittiness, burning, aching, and light sensitivity. Ocular pain is triggered by corneal nociceptors (cornea being the most sensory innervated tissue of the body). It was clearly established that repeated direct damage to ocular surface and per se corneal nerves can cause peripheral and central sensitization mechanisms explaining the ocular pain in some patients with DED. However, the brain regions and the neuronal pathways associated with ocular pain are still unclear. Thus, a better characterization of chronic ocular pain and an understanding of the peripheral and central molecular and cellular mechanisms involved are crucial issues for developing effective management and therapeutic strategy to alleviate ocular pain. In this review, we first describe the nociceptive corneal nerve pathways and the classification and the neurochemistry of primary afferents innervating the cornea. Then, an update of the fundamental and clinical studies related to the inflammatory processes linked to ocular pain is detailed. The last part of the review presents the diagnostic tools used in clinic for evaluating corneal sensitivity and corneal inflammation.


Subject(s)
Chronic Pain/etiology , Eye Pain/etiology , Chronic Pain/pathology , Comprehension , Cornea/anatomy & histology , Cornea/innervation , Cornea/pathology , Dry Eye Syndromes/complications , Dry Eye Syndromes/pathology , Eye Pain/pathology , Humans , Retinal Neurons/cytology , Retinal Neurons/pathology , Retinal Neurons/physiology , Trigeminal Ganglion/cytology , Trigeminal Ganglion/pathology , Trigeminal Ganglion/physiology
12.
EMBO Rep ; 17(12): 1738-1752, 2016 12.
Article in English | MEDLINE | ID: mdl-27733491

ABSTRACT

Sickness behavior defines the endocrine, autonomic, behavioral, and metabolic responses associated with infection. While inflammatory responses were suggested to be instrumental in the loss of appetite and body weight, the molecular underpinning remains unknown. Here, we show that systemic or central lipopolysaccharide (LPS) injection results in specific hypothalamic changes characterized by a precocious increase in the chemokine ligand 2 (CCL2) followed by an increase in pro-inflammatory cytokines and a decrease in the orexigenic neuropeptide melanin-concentrating hormone (MCH). We therefore hypothesized that CCL2 could be the central relay for the loss in body weight induced by the inflammatory signal LPS. We find that central delivery of CCL2 promotes neuroinflammation and the decrease in MCH and body weight. MCH neurons express CCL2 receptor and respond to CCL2 by decreasing both electrical activity and MCH release. Pharmacological or genetic inhibition of CCL2 signaling opposes the response to LPS at both molecular and physiologic levels. We conclude that CCL2 signaling onto MCH neurons represents a core mechanism that relays peripheral inflammation to sickness behavior.


Subject(s)
Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Inflammation/metabolism , Melanins/metabolism , Neurons/metabolism , Pituitary Hormones/metabolism , Signal Transduction , Animals , Chemokine CCL2/deficiency , Chemokine CCL2/immunology , Cytokines/biosynthesis , Cytokines/genetics , Cytokines/immunology , Hypothalamic Hormones/genetics , Hypothalamic Hormones/immunology , Illness Behavior , Lipopolysaccharides/immunology , Melanins/genetics , Melanins/immunology , Mice , Neurons/immunology , Pituitary Hormones/genetics , Pituitary Hormones/immunology , Receptors, CCR2/metabolism , Weight Loss
13.
Biochim Biophys Acta ; 1863(9): 2322-32, 2016 09.
Article in English | MEDLINE | ID: mdl-27321910

ABSTRACT

E-prostanoid receptor subtype 2 (EP2) agonists are currently under clinical development as hypotensive agents for the treatment of ocular hypertension. However, the effects of EP2 receptor agonists on trabecular meshwork (TM) alterations leading to primary open-angle glaucoma (POAG) are still unknown. Here, we evaluated whether EP2 receptor activation exhibits protective functions on TM cell death induced by endoplasmic reticulum (ER) stress. We show that the EP2 receptor agonist butaprost protects TM cell death mediated by the ER stress inducer tunicamycin through a cyclic AMP (cAMP)-dependent mechanism, but independent of the classical cAMP sensors, protein kinase A and exchange proteins activated by cAMP. The ER stress-induced intrinsic apoptosis inhibited by the EP2 receptor agonist was correlated with a decreased accumulation of the cellular stress sensor p53. In addition, p53 down-regulation was associated with inhibition of its transcriptional activity, which led to decreased expression of the pro-apoptotic p53-upregulated modulator of apoptosis (PUMA). The stabilization of p53 by nutlin-3a abolished butaprost-mediated cell death protection. In conclusion, we showed that EP2 receptor activation protects against ER stress-dependent mitochondrial apoptosis through down-regulation of p53. The specific inhibition of this pathway could reduce TM alterations observed in POAG patients.


Subject(s)
Apoptosis , Cytoprotection , Down-Regulation , Endoplasmic Reticulum Stress , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Signal Transduction , Trabecular Meshwork/pathology , Tumor Suppressor Protein p53/metabolism , Adult , Alprostadil/analogs & derivatives , Alprostadil/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Caspases/metabolism , Cell Death/drug effects , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytochromes c/metabolism , Cytoprotection/drug effects , Down-Regulation/drug effects , Endoplasmic Reticulum Chaperone BiP , Guanine Nucleotide Exchange Factors/metabolism , Heat-Shock Proteins/metabolism , Humans , Male , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Proto-Oncogene Proteins/metabolism , Signal Transduction/drug effects , Transcription Factor CHOP/metabolism , Tunicamycin/pharmacology , Unfolded Protein Response/drug effects
14.
Invest Ophthalmol Vis Sci ; 57(4): 1816-25, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27082296

ABSTRACT

PURPOSE: Prostaglandin F2α analogues are the first-line medication for the treatment of ocular hypertension (OHT), and prostanoid EP2 receptor agonists are under clinical development for this indication. The goal of this study was to investigate the effects of F prostanoid (FP) and EP2 receptor activation on the myofibroblast transition of primary trabecular meshwork (TM) cells, which could be a causal mechanism of TM dysfunction in glaucoma. METHODS: Human primary TM cells were treated with either latanoprost or butaprost and TGF-ß2. Trabecular meshwork contraction was measured in a three-dimensional (3D) TM cell-populated collagen gel (CPCG) model. Expression of α-smooth muscle actin (α-SMA) and phosphorylation of myosin light chain (MLC) were determined by Western blot. Assembly of actin stress fibers and collagen deposition were evaluated by immunocytochemistry. Involvement of p38, extracellular signal-regulated kinase (ERK), and Rho-associated kinase (ROCK) pathways as well as matrix metalloproteinase activation was tested with specific inhibitors. RESULTS: In one source of validated adult TM cells, latanoprost induced cell contraction as observed by CPCG surface reduction and increased actin polymerization, α-SMA expression, and MLC phosphorylation, whereas butaprost inhibited TGF-ß2-induced CPCG contraction, actin polymerization, and MLC phosphorylation. Both agonists inhibited TGF-ß2-dependent collagen deposition. The latanoprost effects were mediated by p38 pathway. CONCLUSIONS: Latanoprost decreased TM collagen accumulation but promoted a contractile phenotype in a source of adult TM cells that could modulate the conventional outflow pathway. In contrast, butaprost attenuated both TM contraction and collagen deposition induced by TGF-ß2, thereby inhibiting myofibroblast transition of TM cells. These results open new perspectives for the management of OHT.


Subject(s)
Glaucoma/drug therapy , Myofibroblasts/metabolism , Prostaglandins F, Synthetic/pharmacology , RNA/genetics , Receptors, Prostaglandin E, EP2 Subtype/drug effects , Receptors, Prostaglandin/drug effects , Trabecular Meshwork/metabolism , Actins/biosynthesis , Actins/genetics , Adult , Alprostadil/analogs & derivatives , Alprostadil/pharmacology , Animals , Antihypertensive Agents/pharmacology , Blotting, Western , Cell Survival , Cells, Cultured , Dinoprost , Glaucoma/genetics , Glaucoma/metabolism , Humans , Immunohistochemistry , Latanoprost , Male , Myofibroblasts/drug effects , Myofibroblasts/pathology , Myosin Light Chains/metabolism , Neuroprotective Agents , Prostaglandins E, Synthetic , Rats , Real-Time Polymerase Chain Reaction , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Signal Transduction/drug effects , Trabecular Meshwork/drug effects , Trabecular Meshwork/pathology
15.
J Neuroinflammation ; 13: 44, 2016 Feb 20.
Article in English | MEDLINE | ID: mdl-26897546

ABSTRACT

BACKGROUND: Glaucoma is one of the leading causes of irreversible blindness in the world. The major risk factor is elevated intraocular pressure (IOP) leading to progressive retinal ganglion cell (RGC) death from the optic nerve (ON) to visual pathways in the brain. Glaucoma has been reported to share mechanisms with neurodegenerative disorders. We therefore hypothesize that neuroinflammatory mechanisms in central visual pathways may contribute to the spread of glaucoma disease. The aim of the present study was to analyze the neuroinflammation processes that occur from the pathological retina to the superior colliculi (SCs) in a rat model of unilateral ocular hypertension induced by episcleral vein cauterization (EVC). RESULTS: Six weeks after unilateral (right eye) EVC in male Long-Evans rats, we evaluated both the neurodegenerative process and the neuroinflammatory state in visual pathway tissues. RGCs immunolabeled (Brn3a(+)) in ipsilateral whole flat-mounted retina demonstrated peripheral RGC loss associated with tissue macrophage/microglia activation (CD68(+)). Gene expression analysis of hypertensive and normotensive retinas revealed a significant increase of pro-inflammatory genes such as CCL2, IL-1ß, and Nox2 mRNA expression compared to naïve eyes. Importantly, we found an upregulation of pro-inflammatory markers such as IL-1ß and TNFα and astrocyte and tissue macrophage/microglia activation in hypertensive and normotensive RGC projection sites in the SCs compared to a naïve SC. To understand how neuroinflammation in the hypertensive retina is sufficient to damage both right and left SCs and the normotensive retina, we used an inflammatory model consisting in an unilateral stereotaxic injection of TNFα (25 ng/µl) in the right SC of naïve rats. Two weeks after TNFα injection, using an optomotor test, we observed that rats had visual deficiency in both eyes. Furthermore, both SCs showed an upregulation of genes and proteins for astrocytes, microglia, and pro-inflammatory cytokines, notably IL-1ß. In addition, both retinas exhibited a significant increase of inflammatory markers compared to a naïve retina. CONCLUSIONS: All these data evidence the complex role played by the SCs in the propagation of neuroinflammatory events induced by unilateral ocular hypertension and provide a new insight into the spread of neurodegenerative diseases such as glaucoma.


Subject(s)
Encephalitis/complications , Encephalitis/pathology , Functional Laterality/physiology , Ocular Hypertension/etiology , Up-Regulation/physiology , Visual Pathways/pathology , Animals , Antigens, CD/metabolism , Calcium-Binding Proteins/metabolism , Cholera Toxin/pharmacokinetics , Cytokines/metabolism , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Male , Microfilament Proteins/metabolism , Ocular Hypertension/pathology , Optometry , Organic Chemicals/pharmacokinetics , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Long-Evans , Retinal Ganglion Cells/pathology , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation/drug effects , Visual Pathways/metabolism
16.
Neurobiol Dis ; 88: 16-28, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26747211

ABSTRACT

Ocular surface diseases are among the most frequent ocular pathologies, with prevalence ranging from 20% of the general population. In addition, ocular pain following corneal injury is frequently observed in clinic. The aim of the study was to characterize the peripheral and central neuroinflammatory process in the trigeminal pathways in response to cornea alteration induced by chronic topical instillations of 0.2% benzalkonium chloride (BAC) in male C57BL/6J mice. In vitro BAC induced neurotoxicity and increases neuronal (FOS, ATF3) and pro-inflammatory (IL-6) markers in primary mouse trigeminal ganglion culture. BAC-treated mice exhibited 7days after the treatment reduced aqueous tear production and increased inflammatory cell infiltration in the cornea. Hypertonic saline-evoked eye wipe behavior was enhanced in BAC-treated animals that exhibited increased FOS, ATF3 and Iba1 immunoreactivity in the trigeminal ganglion. Ocular inflammation is associated with a significant increase in IL-6 and TNF-α mRNA expression in the trigeminal ganglion. We reported a strong increase in FOS and Iba1 positive cells in particular in the sensory trigeminal complex at the ipsilateral interpolaris/caudalis (Vi/Vc) transition and Vc/upper cervical cord (Vc/C1) regions. In addition, activated microglial cells were tightly wrapped around activated FOS neurons in both regions and phosphorylated p38 mitogen-activated protein kinase was markedly enhanced specifically in microglial cells during ocular inflammation. Similar data were obtained in the facial motor nucleus. These neuroanatomical data correlated with the increase in mRNA expression of pro-inflammatory (TNF-α, IL-6, CCL2) and neuronal (FOS and ATF3) markers. Interestingly, the suppression of corneal inflammation 10days following the end of BAC treatment resulted in a marked attenuation of peripheral and central changes observed in pathological conditions. This study provides the first demonstration that corneal inflammation induces activation of neurons and microglial p38 MAPK pathway within sensory trigeminal complex. These results suggest that this altered activity in intracellular signaling caused by ocular inflammation might play a priming role in the central sensitization of ocular related brainstem circuits, which represents a significant factor in ocular pain development.


Subject(s)
Encephalitis/etiology , Eye Injuries/complications , Neuritis/etiology , Trigeminal Neuralgia/etiology , Animals , Anti-Infective Agents, Local/toxicity , Benzalkonium Compounds/toxicity , Cornea/pathology , Disease Models, Animal , Eye Injuries/chemically induced , Eye Movements/drug effects , Eye Movements/physiology , Functional Laterality/physiology , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Oncogene Proteins v-fos/metabolism , Time Factors , Trigeminal Ganglion/drug effects
18.
Stem Cell Res Ther ; 6: 177, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26377305

ABSTRACT

INTRODUCTION: Glaucoma is a sight-threatening retinal neuropathy associated with elevated intraocular pressure (IOP) due to degeneration and fibrosis of the trabecular meshwork (TM). Glaucoma medications aim to reduce IOP without targeting the specific TM pathology, Bone-marrow mesenchymal stem cells (MSCs) are used today in various clinical studies. Here, we investigated the potential of MSCs therapy in an glaucoma-like ocular hypertension (OHT) model and decipher in vitro the effects of MSCs on primary human trabecular meshwork cells. METHODS: Ocular hypertension model was performed by cauterization of 3 episcleral veins (EVC) of Long-Evans male rat eyes. MSCs were isolated from rat bone marrow, amplified in vitro and tagged with quantum dot nanocrystals. Animals were distributed as 1) MSCs group receiving 5.10(5)cells/6µl Minimum Essential Medium and 2) MEM group receiving 6µl MEM (n = 10 each). Injections were performed into the anterior chamber of 20 days-hypertensive eyes and IOP was monitored twice a week for 4 weeks. At the end of experiment, cell distribution in the anterior segment was examined in confocal microscopy on flat mounted corneas. Moreover, we tested in vitro effects of MSCs conditioned medium (MSC-CM) on primary human trabecular meshwork cells (hTM cells) using Akt activation, myosin phosphorylation and TGF-ß2-dependent profibrotic phenotype in hTM cells. RESULTS: We demonstrated a rapid and long-lasting in vivo effect of MSCs transplantation that significantly reduced IOP in hypertensive eyes induced by EVC. MSCs were located to the ciliary processes and the TM. Enumeration of RGCs on whole flat-mounted retina highlighted a protective effect of MSCs on RGCs death. In vitro, MSC-CM promotes: (i) hTM cells survival by activating the antiapoptotic pathway, Akt, (ii) hTM cells relaxation as analyzed by the decrease in myosin phosphorylation and (iii) inhibition of TGF-ß2-dependent profibrotic phenotype acquisition in hTM cells. CONCLUSIONS: MSCs injection in the ocular anterior chamber in a rat model of OHT provides neuroprotective effect in the glaucoma pathophysiology via TM protection. These results demonstrate that MSCs constitute promising tool for treating ocular hypertension and retinal cell degeneration.


Subject(s)
Glaucoma/therapy , Mesenchymal Stem Cell Transplantation , Animals , Apoptosis , Cells, Cultured , Intraocular Pressure , Male , Mesenchymal Stem Cells/cytology , Rats , Rats, Long-Evans
19.
Biol Aujourdhui ; 209(1): 1, 2015.
Article in French | MEDLINE | ID: mdl-26115710
20.
Exp Eye Res ; 139: 136-43, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26072022

ABSTRACT

Tissue clearing and subsequent imaging of intact transparent tissues have provided an innovative way to analyze anatomical pathways in the nervous system. In this study, we combined a recent 3-dimensional imaging of solvent cleared organ (3DISCO) procedure, light-sheet microscopy, fluorescent retrograde tracer, and Imaris software to 3D map corneal sensory neurons within a whole adult mouse trigeminal ganglion (TG). We first established the optimized steps to easily and rapidly clear a fixed TG. We found that the 3DISCO procedure gave excellent results and took less than 3 h to clear the TG. In a second set of experiments, a retrograde tracer (cholera toxin B Alexa 594-conjugated) was applied to de-epithelialized cornea to retrograde-labeled corneal sensory neurons. Two days later, TGs were cleared by the 3DISCO method and serial imaging was performed using light-sheet ultramicroscopic technology. High-resolution images of labeled neurons can be easily and rapidly obtained from a 3D reconstructed whole mouse TG. We then provided a 3D reconstruction of corneal afferent neurons and analyzed their precise localization in the TG. Thus, we showed that neurons supplying corneal sensory innervation exhibit a highly specific limited dorsomedial localization within the TG. We report that our combined method offers the possibility to perform manual (on 20 µm sections) and automated (on 3D reconstructed TG) counting of labeled cells in a cleared mouse TG. To conclude, we illustrate that the combination of the 3DISCO clearing method with light-sheet microscopy, retrograde tracer, and automatic counting represents a rapid and reliable method to analyze a subpopulation of neurons within the peripheral and central nervous system.


Subject(s)
Cornea/innervation , Corneal Diseases/diagnosis , Imaging, Three-Dimensional , Microscopy/methods , Neurons, Afferent/ultrastructure , Sensation , Trigeminal Ganglion/ultrastructure , Animals , Corneal Diseases/physiopathology , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neurons, Afferent/physiology , Trigeminal Ganglion/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...