Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; 63(29): 9937-9960, 2023.
Article in English | MEDLINE | ID: mdl-35587167

ABSTRACT

Now-a-days, the food/pharma realm faces with great challenges for the application of bioactive molecules when applying them in free form due to their instability in vitro/in vivo. For promoting the biological and functional properties of bioactive molecules, efficient delivery systems have played a pivotal role offering a controlled delivery and improved bioavailability/solubility of bioactives. Among different carbohydrate-based delivery systems, seed gum-based vehicles (SGVs) have shown great promise, facilitating the delivery of a high concentration of bioactive at the site of action, a controlled payload release, and less bioactive loss. SGVs are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components. Here, we offer a comprehensive overview of seed gum-based nano- and microdevices as delivery systems for bioactive molecules. We have a focus on structural/functional attributes and health-promoting benefits of seed gums, but also strategies involving modification of these biopolymers are included. Diverse SGVs (nano/microparticles, functional films, hydrogels/nanogels, particles for Pickering nanoemulsions, multilayer carriers, emulsions, and complexes/conjugates) are reviewed and important parameters for bioactive delivery are highlighted (e.g. bioactive-loading capacity, control of bioactive release, (bio)stability, and so on). Future challenges for these biopolymer-based carriers have also been discussed. HighlightsSeed gum-based polymers are promising materials to design different bioactive delivery systems.Seed gum-based delivery systems are particles, fibers, complexes, conjugates, hydrogels, etc.Seed gum-based vehicles are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components.


Subject(s)
Drug Delivery Systems , Food , Emulsions , Biopolymers , Hydrogels
2.
Adv Colloid Interface Sci ; 290: 102384, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33706198

ABSTRACT

Hydrophobicity and low aqueous-solubility of different drugs/nutraceuticals remain a persistent challenge for their development and clinical/food applications. A range of nanotechnology strategies have been implemented to address this issue, and amongst which a particular emphasis has been made on those that afford an improved biological performance and tunable release kinetic of bioactives through a one-step process. More recently, the technique of electrospraying (or electrohydrodynamic atomization) has attained notable impulse in virtue of its potential to tune attributes of nano/micro-structured particles (e.g., porosity, particle size, etc.), rendering a near zero-order release kinetics, diminished burst release manner, as well as its simplicity, reproducibility, and applicability to a broad spectrum of hydrophobic and poorly water-soluble bioactives. Controlled morphology or monodispersity of designed particles could be properly obtained via electrospraying, with a high encapsulation efficiency and without unfavorable denaturation of thermosensitive bioactives upon encapsulation. This paper overviews the recent technological advances in electrospraying for the encapsulation of low queues-soluble bioactive agents. State-of-the-art, advantages, applications, and challenges for its implementation in pharmaceutical/food researches are also discussed.


Subject(s)
Nanoparticles , Water , Nanotechnology , Particle Size , Reproducibility of Results , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...