Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9183, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649676

ABSTRACT

Staphylococci as a nosocomial infection agent, increases the possibility of contracting diseases such as wound infection, sepsis and skin infections in humans. It was shown that Staphylococcus aureus considered as a commensal organism causing various both endemic and epidemic hospital-acquired infections. Air samples were collected from Sina Hospital, Hamadan city, which dedicated to various respiratory diseases and analysed by biochemical tests. The resistance and sensitivity of bacterial strains to the cefoxitin antibiotic were also determined. Staphylococcus aureus density (CFU/m3) were measured in the air of various wards as follows: infectious 13.35 ± 7.57, poisoning 29.84 ± 33.43, emergency 8.64 ± 2.72, eye operation room 0, recovery room 6.28 ± 4.90, skin outpatient operation room 4.71 ± 2.36, respiratory isolation 0, ICU 0.79 ± 1.36, and the administrative room 6.28 ± 5.93; while the Staphylococcus epidermidis were as follows: infectious 1.57 ± 2.35, poisoning 2.35 ± 4.08, emergency 2.35 ± 2.35, eye operation room 0, recovery room 0.78 ± 1.36, skin outpatient operation room 2.35 ± 2.35, respiratory isolation 0, ICU 2.35 ± 4.08, and the administrative room 1.57 ± 1.36. The positive and negative control samples showed a concentration of 0. Moreover, among the S. aureus isolates, 33.3% were found to be resistant to cefoxitin, while 40.6% showed to be sensitive. Based on the results, the number of active people and the type and quality of ventilation are very effective in the air quality of various wards of hospital. The poisoning section showed the most contaminated air and the highest resistance and sensitivity to the cefoxitin antibiotic.


Subject(s)
Air Microbiology , Anti-Bacterial Agents , Cefoxitin , Hospitals , Microbial Sensitivity Tests , Staphylococcus aureus , Staphylococcus epidermidis , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/isolation & purification , Cefoxitin/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Cross Infection/microbiology , Drug Resistance, Bacterial/drug effects , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy
2.
Iran J Microbiol ; 15(6): 734-741, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38156304

ABSTRACT

Background and Objectives: Bisphenol A (BPA) is a toxic compound with broad applications in the plastics industry. BPA has harmful effects on various organisms and its efficient removal is necessary. The microbial degradation of BPA is a safe and economical approach. In this research, soil samples containing decaying plants were screened to isolate a BPA-degradable bacterial strain. Materials and Methods: Soil samples were collected from different locations in Damghan, Semnan province, Iran. To enrich BPA-degrading bacteria, the samples were cultured in a stepwise manner in a mineral medium containing increasing BPA concentrations (5 to 40 mg/L). The ability of isolated bacteria in degrading BPA was assayed by Folin-Ciocalteu and high-performance liquid chromatography methods. The biodegradation efficiency of the most efficient isolate was assayed under distinct conditions and it was identified through the sequencing of the 16S rRNA gene. Results: Among the isolated bacteria, Pseudomonas aeruginosa DU2 (GenBank accession number: OP919484) showed the most BPA biodegradation ability. The highest BPA degradation (52.98%) was observed in the mineral medium containing 5 mg/L BPA and the inoculum size of 6 × 107 CFU/mL at pH 9 and in the presence of 0.05% (w/v) NaCl during 10 days. Conclusion: These results offer soil containing decaying plants as a promising source for finding BPA-degrading bacteria. P. aeruginosa DU2 has basal BPA removal ability, which could be improved by optimization of medium components and growth conditions.

3.
Ecotoxicol Environ Saf ; 241: 113717, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35679732

ABSTRACT

The aim of this study was to compare the concentrations of the benzene, toluene, ethylbenzene, and xylene (BTEX) compounds in the urine of smokers and the control group considering the role of age, weight, job, history of waterpipe and cigarette smoking, and driving time. The chemicals in the urine of 99 smokers and 31 nonsmokers were extracted by liquid-liquid extraction method and their concentrations were measured by liquid injection GC/MS. The mean concentration of benzene, toluene, ethylbenzene, m-xylene, o-xylene, p-xylene, and total BTEX in waterpipe smokers were found to be 471.40, 670.90, 127.91, 167.64, 90.62, 46.04, and 1574.50 ng/g. creatinine, respectively. For the waterpipe&cigarette smokers, the concentration of the compounds were 708.00, 959.00, 146.40, 192.50, 93.30, 53.07, and 2152.00 ng/g.creatinine, respectively. For nonsmokers the concentrations of these compounds were 88.12, 140.40, 36.68, 57.29, 31.53, 26.21, and 380.30 ng/g.creatinine, respectively. Driving time, waterpipe smoking and cigarette smoking were positively associated with BTEX concentration (p < 0.05). Fruity tobacco showed higher concentrations of BTEX compared to the regular tobacco, and athlete persons had les urinary BTEX than the non-athletes. There was not significant correlation between the BTEX and age, height, weight, and BMI. High concentrations of BTEX compounds in the urine of waterpipe and cigarette smokers compared to nonsmokers indicate that waterpipe and cigarette can be an important source of exposure to these compounds and the known adverse effects of these compounds, especially carcinogenicity, threaten the health of smokers.


Subject(s)
Benzene , Water Pipe Smoking , Benzene Derivatives/urine , Creatinine , Humans , Non-Smokers , Smokers , Toluene/urine , Xylenes/urine
4.
Environ Pollut ; 298: 118845, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35031402

ABSTRACT

BTEX (benzene, toluene, ethylbenzene, and xylene) are a group of toxic organic compounds that exposure to them can cause adverse short and long terms health effects. We measured the levels of BTEX in the indoor and outdoor air of rural areas in Ardebil, Iran. We further assessed their health risks and determinants parameters. BTEX were sampled by drawing air through activated charcoal tubes, using low flow SKC pumps. Samples were extracted by adding carbon disulfide and analyzed by subjecting the aromatic fraction to GC-FID. The results indicated that the concentrations of BTEX in the indoor air were significantly higher than those of outdoor (p-value<0.05). The mean indoor concentrations of benzene, toluene, ethylbenzene, and xylene were 41.69 ± 30.70, 96.73 ± 60.75, 38.73 ± 33.59, and 59.42 ± 35.99 µg m-3, while the mean outdoor concentrations of them were 8.94 ± 7.32, 36.93 ± 21.82, 7.66 ± 5.63, and 18.14 ± 10.25 µg m-3, respectively. The concentrations of BTEX in indoor and outdoor of the rural areas that used kerosene fuel for heating systems were significantly higher than those used natural gas. The results indicated that the tobacco smoke is a notable temporary source of indoor BTEX. The mean inhalation lifetime cancer risk (LTCR) value of benzene for residents of rural houses with the natural gas and kerosene heating systems were 28.6 × 10-6 and 97.2 × 10-6, while for ethylbenzene these figures stood out at 29.1 × 10-6 and 95.8 × 10-6, respectively. LTCR value for residents who used kerosene fuel for heating was higher than the World Health Organization (WHO) recommended limit.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Neoplasms , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Benzene/analysis , Benzene Derivatives/analysis , Environmental Monitoring , Heating , Neoplasms/epidemiology , Risk Assessment , Toluene/analysis , Xylenes/analysis
5.
Environ Sci Pollut Res Int ; 28(24): 31195-31206, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33598835

ABSTRACT

This study was derived to investigation of BTEX (benzene, toluene, ethylbenzene, xylenes) concentrations in printing and copying centers (PCCs) in Ardabil city of Iran. Fifty-three PCCs were randomly selected from all the 136 number of PCCs and BTEX was sampled form their indoor air. The results showed that the concentration of BTEX in the indoor air PCCs is lower than the OELs (occupational exposure limit) in all cases. The obtained mean concentrations of benzene, toluene, ethylbenzene, and xylene were 93.6±63.2, 150.6±99.2, 34.3±16.8, and 29.5±15.2 µg/m3 respectively. Type of printer, number of printing and copying device, and type of ventilation system had significant influence on the BTEX concentration. The mean inhalation lifetime cancer risk (LTCR) value for benzene and ethylbenzene in the indoor air of the PCCs with LaserJet and inkjet printers was 44.4 × 10-6 and 153.3 × 10-6, and 23.4×10-6 and 54.2× 10-6, respectively, which were higher than EPA (Environmental Protection Agency) and World Health Organization (WHO) recommended limits. The hazard quotient (HQ) of benzene in the indoor air of the PCCs with inkjet printers was >1, which indicates that the non-carcinogenic risks associated with exposure to these compounds are considerable.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Benzene/analysis , Benzene Derivatives/analysis , Cities , Environmental Monitoring , Iran , Printing, Three-Dimensional , Risk Assessment , Toluene/analysis , Xylenes/analysis
6.
J Expo Sci Environ Epidemiol ; 30(5): 805-813, 2020 09.
Article in English | MEDLINE | ID: mdl-32555400

ABSTRACT

To determine the concentration of carbon monoxide (CO) and particulate matter (PMs), indoor air samples were collected from 60 waterpipe cafés in Ardabil city of Iran. Moreover, the influence of several structural, operational, and ventilation system were evaluated on the concentration of the selected pollutants. The results showed that the mean concentration of CO (12.0 ± 7.2 mg/m3) and PMs (PM1 = 171.5 ± 119.6 µg/m3, PM2.5 = 303.3 ± 201.9 µg/m3, PM10 = 440.3 ± 272.2 µg/m3) were notably higher than the guideline levels. According to the results, open face/café area was influenced by the natural ventilation rate and the mean air exchange rate was 3.1 ± 1.1 min-1. The natural ventilation has a functional role on air quality of the cafes, and fan-type mechanical ventilation was influencing factor on CO concentration when the natural ventilation was restricted. "Type of used charcoal" had the highest influence on the releasing of pollutants inside the cafés as the pollutant concentrations were lower for simple (raw) charcoal compared with the favored (aromatic) one. The results indicated that the building characteristics and natural ventilation considerably affect air quality of the cafes.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Tobacco Products , Water Pipe Smoking , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Cities , Environmental Monitoring , Humans , Iran , Particulate Matter/analysis , Ventilation
7.
Environ Monit Assess ; 192(5): 280, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32281026

ABSTRACT

In this study, benzene was selected as an indicator of VOCs, and a modeling procedure was carried out on benzene removal (outflow concentration of benzene, C/inflow concentration of benzene, C0), in DC and AC non-thermal plasma systems. Different diameters (18, 23, and 36 mm) of wire-tube plasma reactors were prepared, and models were raised based on the results of experiments with influencing factors of the used voltage, gap size inside the reactor, current density, and specific energy. The results showed correlation between the factors and benzene removal in both DC and AC discharge non-thermal plasma. The applied voltage as an electrical factor had negative correlation with C/C0, and the correlation was stronger than for gap size which was positively correlated with C/C0. Current density and specific energy were affected by the voltage and gap size of the reactor; the lowest C/C0 values were obtained in the highest values of specific energy and current density. Regarding the raised models, multi-factor exponential model was the most reliable one with the results.


Subject(s)
Air Pollutants , Environmental Monitoring , Models, Chemical , Volatile Organic Compounds/chemistry , Benzene , Electrochemical Techniques
9.
Ecotoxicol Environ Saf ; 159: 102-108, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29730403

ABSTRACT

Concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated in indoor air quality of 50 beauty salons in Ardabil, Iran (2017). Ten liters of air samples were collected from each salons regarding the recommended method and analyzed by GC-FID for BTEX concentration. Also, structural and operational conditions of the salons were studied with a self-designed questioner. The results of this study show that the mean concentration of benzene (32.40 ±â€¯26.38) higher than the recommended levels by Health Canada, ANSES and HKSAR. Among the BTEX, ethylbenzene (62.38 ±â€¯32.37) has the most concentrations in the salons. Subsequently, the cancer risk values in different age groups of birth to <6, 6 to <21, and 21 to <81 for benzene (1.83 × 10-3, 2.76 × 10-4 and 1.50 × 10-4, respectively) and ethylbenzene (4.9 × 10-4, 7.30 × 10-5 and 3.52 × 10-5, respectively) for long time exposure were drastically higher than the recommended levels. The results showed that the benzene concentration is significantly influenced by the structural and operational conditions of type of ventilation system, area of the salons, the number of people in the salon, number of services in the salons, and while doing of bridal makeup.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Beauty Culture , Benzene Derivatives/analysis , Benzene/analysis , Toluene/analysis , Xylenes/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Child , Environmental Monitoring , Humans , Inhalation Exposure/analysis , Iran , Middle Aged , Occupational Exposure/analysis , Risk Assessment , Young Adult
10.
Environ Geochem Health ; 38(2): 413-22, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26072426

ABSTRACT

Microbial quality and physical-chemical properties of recreational spas were surveyed to investigate the health aspect of the spas' water. A total of 195 samples were collected from pools and springs of the spas in five sites from Ardebil Province of Iran. The effects of an independent factor defined as 'condition' and its component sub-factors (i.e., sampling point, location, and sampling date) on microbial quality and physical-chemical properties of the spas were studied by applying path analysis. The influence of physical-chemical properties on microbial quality was also considered. The percentage of samples exceeding the ISIRI (Swimming pool water microbiological specifications (vol 9412), Institute of Standards and Industrial Research of Iran, Tehran, 2007) limits for Staphylococcus (spp.) was up to 55.8 in the springs and 87.8 in the pools, 58.1 and 99.2 for HPC, 90.7 and 97.8 for total coliform and fecal coliform, and 9.3 and 34.4 for Pseudomonas aeruginosa, respectively. There were significant differences between the pools and springs for both physical-chemical properties and microbial quality. From the path analysis, sampling point was the most effective sub-factor of 'condition' on both the physical-chemical properties and microbial quality. Among the physical-chemical properties, water color had the most enhancing or additive influence on microbial pollution, while EC indicated a reducing or subtractive effect.


Subject(s)
Natural Springs , Water Microbiology , Enterobacteriaceae/isolation & purification , Iran , Pseudomonas aeruginosa/isolation & purification , Staphylococcus aureus/isolation & purification
11.
Sci Total Environ ; 524-525: 347-53, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25912530

ABSTRACT

BTEX (benzene, toluene, ethylbenzene and xylene) concentrations, factors affecting their levels, and the exposure risks related to these compounds were studied in waterpipe (Ghalyun/Hookah) cafés of Ardabil city in Islamic Republic of Iran. 81 waterpipe cafés from different districts of Ardabil city were selected and their ambient air was monitored for BTEX compounds. Air samples were taken from standing breathing zone of employees, ~150 cm above the ground level, and were analyzed using GC-FID. In each case, the types of smoked tobacco (regular, fruit flavored), types of ventilation systems (natural/artificial), and the floor level at which the café was located were investigated. A high mean concentration of 4.96±2.63 mg/m(3) corresponding to long term exposure to benzene-related cancer risk of 4314×10(-6) was estimated. The levels of the remaining compounds were lower than the national guideline limits, but their hazard quotients (HQ) for long term exposure to ethylbenzene (1.15) and xylene (17.32) exceeded the HQ unit value. Total hazard indices (HI) of 63.23 were obtained for non-cancer risks. Type of the smoked tobacco was the most important factor influencing BTEX concentrations in the cafés. BTEX concentrations in indoor ambient air of Ardabil waterpipe cafés were noticeably high, and therefore may pose important risks for human health on both short and long term exposures.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Tobacco Smoke Pollution/analysis , Air Pollution, Indoor/statistics & numerical data , Benzene/analysis , Benzene Derivatives/analysis , Cities , Iran , Restaurants , Tobacco Products , Tobacco Smoke Pollution/statistics & numerical data , Toluene/analysis , Xylenes/analysis
12.
Article in English | MEDLINE | ID: mdl-24955244

ABSTRACT

BACKGROUND: Zero valent iron and copper oxide nanoparticles (30-60 nm) were coated on a bed of natural zeolite (Clinoptilolite) with 1-2 mm grains and arranged as a dual filter in a stainless steel cylindrical reactor (I.D 4.5 cm and L = 30 cm) to investigating the coated bed removal efficiency for BTX. The experiments were conducted in three steps. First, with an air flow of 1.5 L/min and temperature range of 38 (ambient temperature) to 600°C the BTX removal and mineralization was surveyed. Then, in an optimized temperature the effect of flow rate and pollution loading rate were surveyed on BTX removal. RESULTS: The BTX removal at 300 and 400°C were respectively up to 87.47% and 94.03%. Also in these temperatures respectively 37.21% and 90.42% of BTX mineralization were achieved. In the retention times of 14.1 s and 7.05 s, respectively 96.18% and 78.42% of BTX was removed. CONCLUSIONS: According to the results, this adsorptive-thermocatalytic process with using Clinoptilolite as an adsorbent bed and combined Fe(0) and Cu2O nanoparticles as catalysts can be an efficient and competitive process in the condition of high flow rate and high pollution loading rate with an adequate process temperature of 350°C.

SELECTION OF CITATIONS
SEARCH DETAIL
...