Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
J Biomater Sci Polym Ed ; : 1-21, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037940

ABSTRACT

In this study, a bovine serum albumin-decorated zeolitic imidazolate framework (ZIF-8@BSA) was used to enhance the anticancer and antimetastatic properties of methotrexate. SEM, DLS, FT-IR, and XRD confirmed the physicochemical suitability of the developed nanoparticles. According to the SEM analysis, the mean size of ZIF-8 nanoparticles was 68.5 ± 13.31 nm. The loading capacity and encapsulation efficiency of MTX@ZIF-8@BSA were 28.77 ± 2.54% and 96.3 ± 0.67%, respectively. According to the in vitro hemolysis test, MTX@ZIF-8@BSA showed excellent blood compatibility. MTX@ZIF-8@BSA exhibited pH sensitivity, releasing more MTX at pH 5.4 (1.73 times) than at pH 7.4. The IC50 value of MTX@ZIF-8@BSA on 4T1 cells was 32.7 ± 7.3 µg/mL after 48 h of treatment, outperforming compared to free MTX with an IC50 value of 53.3 ± 3.7 µg/mL. Treatment with MTX@ZIF-8@BSA resulted in superior tumor growth suppression in tumor-bearing mice than free MTX. Furthermore, based on histopathology tests, MTX@ZIF-8@BSA reduced the metastasis in lung and liver tissues. While there was not any noticeable toxicity in the vital organs of MTX@ZIF-8@BSA-receiving mice, free methotrexate resulted in severe toxicity in the kidneys and liver. According to the preliminary in vitro and in vivo findings, MTX@ZIF-8@BSA presents an attractive drug delivery system candidate for breast cancer due to its enhanced antitumor efficacy and lower toxicity.

2.
J Drug Target ; 32(4): 444-455, 2024 04.
Article in English | MEDLINE | ID: mdl-38445558

ABSTRACT

In this study, a novel selenium@zeolitic imidazolate framework core/shell nanocomposite stabilised with alginate was used to improve the anti-tumour activity of curcumin. The developed alginate-stabilised curcumin-loaded selenium@zeolitic imidazolate framework (Alg@Cur@Se@ZIF-8) had a mean diameter of 159.6 nm and polydispersity index < 0.25. The release of curcumin from the nanocarrier at pH 5.4 was 2.69 folds as high as at pH 7.4. The bare nanoparticles showed haemolytic activity of about 12.16% at a concentration of 500 µg/mL while covering their surface with alginate reduced this value to 5.2%. By investigating cell viability, it was found that Alg@Cur@Se@ZIF-8 caused more cell death than pure curcumin. Additionally, in vivo studies showed that Alg@Cur@Se@ZIF-8 dramatically reduced tumour growth compared to free curcumin in 4T1 tumour-bearing mice. More importantly, the histological study confirmed that the developed drug delivery system successfully inhibited lung and liver metastasis while causing negligible toxicity in vital organs. Overall, due to the excellent inhibitory activity on cancerous cell lines and tumour-bearing animals, Alg@Cur@Se@ZIF-8 can be considered promising for breast cancer therapy.


Subject(s)
Curcumin , Nanocomposites , Nanoparticles , Neoplasms , Selenium , Mice , Animals , Drug Carriers , Alginates , Neoplasms/drug therapy , Hydrogen-Ion Concentration
3.
Colloids Surf B Biointerfaces ; 234: 113671, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38039822

ABSTRACT

A critical problem with the use of biomaterial implants is associated with bacterial adhesion on the surface of implants and in turn the biofilm formation. Among different strategies that have been reported to resolve this dilemma, surface design combined with both antiadhesive and antimicrobial properties has proven to be highly effective. Physiochemical properties of polymer brush coatings possess non-adhesive capability against bacterial adhesion and create a niche for further functionalization. The current study aims to evaluate the effect of antibiotics incorporated into the polymer brush on bacterial adhesion and biofilm formation. Brushes made of zwitterionic polymers were synthesized, functionalized with vancomycin via both physical and chemical conjugation, and grafted onto the silicon rubber surfaces. Antibacterial and antiadhesive measurements of designed coated biomaterials were mediated through the use of a parallel plate flow chamber against biofilm growth developed by Staphylococcus aureus and Escherichia coli over a period of 24 h. The analysis of biofilm growth on designed coated biomaterials showed that the pristine coated zwitterionic brushes are significantly resistant to bacterial adhesion and biofilm formation but not in the polymer brush coating incorporated with antibiotics.


Subject(s)
Bacterial Adhesion , Polymers , Polymers/pharmacology , Polymers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biocompatible Materials/pharmacology , Biofilms , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Surface Properties
4.
Int J Pharm ; 645: 123418, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37716484

ABSTRACT

Multifunctional nanocarriers are increasingly promising for disease treatment aimed at finding effective therapy and overcoming barriers in drug delivery. Herein, valine conjugated chitosan (VLCS) was used for surface modification of nanocarriers (NCs) based on Poly (ε-caprolactone)-Poly (ethylene glycol)-Poly (ε-caprolactone) (PCL-PEG-PCL) triblock copolymers (NCs@VLCS). The nanocarriers were co-loaded with rivastigmine (RV) and quercetin (QT) to yield the final RV/QT-NCs@VLCS as a multifunctional nanocarrier for Alzheimer's disease (AD) treatment. The large amino acid transporter 1 (LAT-1) was selected for the direction of the NCs to the brain. The biocompatibility of the nanocarrier was studied in HEK-293 and SH-SY5Y cells and rats. The Morris water maze test demonstrated a faster regain of memory loss with RV/QT-NCs@VLCS compared to the other groups. Furthermore, RV/QT-NCs@VLCS and RV/QT-NCs improved GSH depletion induced by scopolamine (SCO), with RV/QT-NCs@VLCS having a superior effect. The real-time PCR analysis revealed that co-delivery of RV and QT by NCs@VLCS showed significantly higher efficacy than sole delivery of RV. RV/QT-NCs@VLCS treatment also modulated the expression of BDNF, ACHE, and TNF-α. The findings revealed that NCs@VLCS co-loaded with RV and QT, significantly increased efficacy relative to the single use of RV and could be considered a potent multifunctional drug delivery system for Alzheimer's treatment.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Rats , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Rivastigmine/therapeutic use , Quercetin/therapeutic use , HEK293 Cells , Neuroblastoma/drug therapy , Polymers/therapeutic use , Polyethylene Glycols/chemistry , Polyesters/chemistry , Drug Carriers/chemistry
5.
J Biomed Mater Res A ; 111(12): 1838-1849, 2023 12.
Article in English | MEDLINE | ID: mdl-37395312

ABSTRACT

This study aimed to present a novel three-dimensional nanocomposite scaffold using poly-ε-caprolactone (PCL), containing transforming growth factor-beta 1 (TGF-ß1)-loaded chitosan-dextran nanoparticles and poly-l-lactic acid (PLLA), to make use of nanofibers and nanoparticles simultaneously. The electrospinning method fabricated a bead-free semi-aligned nanofiber composed of PLLA, PCL, and chitosan-dextran nanoparticles containing TGF-ß1. A biomimetic scaffold was constructed with the desired mechanical properties, high hydrophilicity, and high porosity. Transmission electron microscopy findings showed a linear arrangement of nanoparticles along the core of fibers. Based on the results, burst release was not observed. The maximum release was achieved within 4 days, and sustained release was up to 21 days. The qRT-PCR results indicated an increase in the expression of aggrecan and collagen type Ι genes compared to the tissue culture polystyrene group. The results indicated the importance of topography and the sustained release of TGF-ß1 from bifunctional scaffolds in directing the stem cell fate in cartilage tissue engineering.


Subject(s)
Chitosan , Nanofibers , Nanoparticles , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Transforming Growth Factor beta1 , Delayed-Action Preparations , Chitosan/chemistry , Dextrans , Polyesters/chemistry , Cartilage , Nanoparticles/chemistry
6.
Biomed Pharmacother ; 164: 114943, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37267634

ABSTRACT

In the present study, 5-fluorouracil-loaded niosomal nanoparticles were successfully prepared and coated with chitosan and subsequently crosslinked by tripolyphosphate to form niosomal nanogels. The prepared niosomal formulations were fully characterized for their particle size, zeta potential, particle morphology, drug entrapment efficiency, and in vitro drug release profile. The prepared niosomal nanocarriers exhibited nanoscale particle sizes of 165.35 ± 2.75-322.85 ± 2.75 nm. Chitosan-coated and TPP-crosslinked niosomes exhibited a slightly decreased in particle size and a switch of zeta potential from negative to positive values. In addition, high yield percentage, drug encapsulation efficiency, and drug loading values of 92.11 ± 2.07 %, 66.59 ± 6.06, and 4.65 ± 0.5 were obtained for chitosan-coated formulations, respectively. Moreover, lowering the rate of 5-FU in vitro release was achieved within 72 h by using chitosan-coated formulations. All prepared formulations revealed hemocompatible properties in hemolysis assay with less than 5 % hemolysis percentage at their higher possible concentrations (500 µM and 1 mM). The cell viability by MTT assay showed higher anticancer activity against B16F10 cancerous cells and lower cytotoxicity toward NIH3T3 normal cells than control and pure 5-FU in the studied concentration range (10-100 µM). Investigating the cell migration inhibition properties of fabricated formulations revealed similar results with in vitro cell viability assay with a higher migration inhibition rate for B16F10 cells than NIH3T3 cells, controls, and free 5-FU.


Subject(s)
Chitosan , Nanoparticles , Mice , Animals , Nanogels , Delayed-Action Preparations , Drug Carriers , Hemolysis , NIH 3T3 Cells , Fluorouracil/pharmacology , Antimetabolites , Hydrogen-Ion Concentration , Particle Size
7.
IEEE Trans Nanobioscience ; 22(2): 393-400, 2023 04.
Article in English | MEDLINE | ID: mdl-35914048

ABSTRACT

Klebsiella pneumoniae can cause destructive changes to human lungs if aspirated. The present study aimed to evaluate the immunogenicity of the carriers of Poly lactic-co-glycolic acid (PLGA) and Methoxypoly(ethylene glycol) Poly(caprolactone) (MPEG-PCL) nanoparticles containing the capsular antigen of Klebsiella pneumoniae K2O1 in a model of pulmonary infection in mice as a vaccine candidate. Capsule antigen was extracted from K.pneumoniae K2O1 strain 1053 ATCC 10031 and transported with PLGA or MPEG-PCL nanoparticles as a vaccine in an animal model. The results of FT-IR and AFM confirmed the presence of antigen functional groups in the nanoparticle structure, and semi-spherical shape of the nanoparticles, respectively. The capsular polysaccharide was also used to evaluate the febrileness of the designed vaccine candidates based on the rabbits' pattern, and mortality due to the vaccine candidates in the mice. No fever was observed, and no mortality was observed in the mice. According to the results, the vaccine candidates designed to control the cause of pulmonary infections were effective in the liver, spleen, and lungs of the animals with the ability to enter the first stage of the clinical trial phase.


Subject(s)
Klebsiella pneumoniae , Nanoparticles , Mice , Humans , Animals , Rabbits , Spectroscopy, Fourier Transform Infrared , Drug Carriers/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Nanoparticles/chemistry
8.
BMC Complement Med Ther ; 22(1): 340, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575448

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the second leading cause of cancer death. Although Regorafenib showed survival benefits in patients with CRC, reports imply the recurrence of malignant phenotype resulting from chemotherapy. Evidence demonstrated that a5ß1 integrin plays an important role in the Regorafenib treatment, which, may be led to resistance. In this study, the effects of /siRNA or/ and Quercetin loaded DDAB-mPEG-PCLnanoparticles could reverse this resistance phenotype in colon cancer cells in vitro. METHODS: Regorafenib-resistant Ls-180 colon cancer cell line was developed by long-term exposure to Regorafenib. Quercetin and Regorafenib were separately encapsulated into mPEG-PCL micelles through the nano-precipitation method and characterized by DLS. Optimized doses of Quercetin and Regorafenib were used for combination therapy of resistant cells followed cytotoxicity study using MTT. Gene expression levels of the ß1 subunit of integrin were determined by the real-time method of RT-PCR. RESULTS: Developed Regorafenib resistant LS-180 showed to have Regorafenib IC50 of 38.96 ± 1.72 µM whereas IC50 in non-resistant cells were 8.51 ± 0.29 µM, which meaningful was lower statistically compared to that of a resistant one. The ß1 mRNA level of whole α5ß1 integrin was significantly higher in the resistant cells compared to those of non-resistant ones. Gene expression levels in each siRNA-loaded nanoparticle and Quercetin-loaded one were lower than that in mock experiments. Finally, when these two types of nanoparticles were used to treat resistant cells, gene expression decrease of integrin indicated a greater effect that could be capable of reverse resistancy. CONCLUSION: Results of this study demonstrated another confirmation of involving integrins in cancer resistance following chemotherapy using Regorafenib. Also, it indicated how using siRNA targeting integrin could enhance the plant derivatives like Quercetin effects to reverse resistance in vitro.


Subject(s)
Colonic Neoplasms , Nanoparticles , Humans , Quercetin/pharmacology , RNA, Small Interfering/therapeutic use , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology
9.
Water Environ Res ; 94(7): e10751, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35765847

ABSTRACT

In this study, nano-formulation has been used to tackle one of the most important environmental problems which can be considered a major threat to human health. We prepared some eco-friendly nanostructured lipid carriers (NLCs) as delivery agents to properly deliver an antibacterial agent (eugenol) into hospital wastewater in order to control bacterial growth. Eugenol-loaded nanostructured lipid carriers were prepared by hot high-speed homogenization. Then, the prepared nanocarriers were characterized using different techniques such as transmission electron microscopy, Fourier transform infrared, and dynamic scanning calorimetry. The turbidity assay and colony counting method were used to determine the ability of the prepared eugenol-loaded nanostructured lipid carriers to inhibit bacterial growth rate in the culture media and hospital wastewater, respectively. The mean size and zeta potential of NLC-eugenol were 78.12 ± 6.1 nm and -29.43 ± 2.21 mV, respectively. The results showed that the highest inhibitory effect of NLC-eugenol in culture media was seen in standard and wild Staphylococcus aureus strains (43.42% and 26.41%, respectively) with a concentration of 0.125 µM. The antibacterial activity of NLC-eugenol in sterile wastewater on wild strains of bacteria showed that the most effective concentration to reduce bacterial amounts was 0.125 µM on wild S. aureus and Enterococcus faecalis strains (38% and 33.47%, respectively) at 37°C. The NLC-eugenol with a concentration of 0.125 µM showed the greatest effect of reducing total microbial agents by 28.66% in hospital wastewater at 25°C. The highest antibacterial effect achieved using the 0.125 µM concentration is due to the egel phenomenon. Also, the mechanism of action of NLC-eugenol is cell wall destruction and eventually cell death. The results showed that NLC-eugenol with a concentration of 0.125 µM can reduce wild bacterial strains in sterilized wastewater and hospital wastewater, which can prove the great potential of the prepared eugenol-loaded nanostructured lipid carriers to control bacterial growth. PRACTITIONER POINTS: NLC is one of the safest biodegradable and environmentally friendly carriers, which is nontoxic for humans and the environment. Eugenol is a natural compound, which makes it less toxic for the environment while being toxic for bacteria. Therefore, our method has the least side effect in comparison with existing methods for wastewater treatment. The gradual release of eugenol from NLC nanoparticles can effectively control the pathogenic factors of wastewater.


Subject(s)
Antioxidants , Water Purification , Anti-Bacterial Agents/pharmacology , Culture Media , Drug Carriers/chemistry , Eugenol/pharmacology , Hospitals , Humans , Lipids/chemistry , Particle Size , Staphylococcus aureus , Wastewater
10.
Int J Biol Macromol ; 200: 335-349, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34999039

ABSTRACT

Insulin-like growth factor-1 receptor (IGF-1R) is expressed in malignant and normal breast tissue, and its intermittent activation by multiple IGF-1 signaling pathways leads to neoplasm cell proliferation, impaired apoptosis, increased survival, and resistance to cytotoxic therapeutic agents. Therefore, simultaneous suppression of the receptor and its cognate ligand would be a powerful promising strategy inhibiting malignant phenotypes of breast cancer cells. In the present study, Methoxypoly(ethylene glycol) - Poly(caprolactone) was hybridized with Dimethyldioctadecylammonium bromide (DDAB) cationic lipid (mPEG-PCL-DDAB) nanoparticles (NPs) and used as a carrier for simultaneous delivery of lycopene and insulin-like growth factor 1 receptor-specific lycopene encapsulated-mPEG-PCL-DDAB nanoparticle/siRNA to MCF-7 breast cancer cells. Then, the antitumor effects of this construct were evaluated in vitro. The results demonstrated that the synthesized mPEG-PCL-DDAB nanoparticle had suitable physicochemical properties. The use of mPEG-PCL-DDAB nanoparticle-loaded anti-insulin-like growth factor 1 receptor-siRNA and lycopene dramatically induced the process of apoptosis and arrested cell cycle in the MCF-7 tumor cell lines. In general, the findings of this study demonstrated the potency of mPEG-PCL-DDAB nanoparticles for dual delivery of siRNA, and lycopene in breast cancer cell lines followed the induction of apoptosis.


Subject(s)
Liposomes , Nanoparticles
11.
J Biomater Appl ; 36(6): 1055-1063, 2022 01.
Article in English | MEDLINE | ID: mdl-34304637

ABSTRACT

In this research, magnetic nanostructured lipid carriers (Mag-NLCs) were synthesized for curcumin (CUR) delivery. NLCs are drug-delivery systems prepared by mixing solid and liquid (oil) lipids. For preparation of NLCs, cetylpalmitate was selected as solid lipid and fish oil as liquid lipid. CUR-Mag-NLCs were prepared using high-pressure homogenization technique and were characterized by methods including X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS). The CUR-Mag-NLCs were developed as a particle with a size of 140 ± 3.6 nm, a polydispersity index of 0.196, and a zeta potential of -22.6 mV. VSM analysis showed that the CUR-Mag-NLCs have excellent magnetic properties. Release rate of the drug was higher at 42 °C than 37 °C, indicating that release of the synthesized nanoparticles is temperature-dependent. Evaluation of mitochondrial toxicity was done using the isolated rats liver mitochondria including glutathione (GSH), malondialdehyde (MDA), and the ferric- reducing ability of plasma (FRAP) assays to study biosafety of the CUR-Mag-NLCs. Results of In vitro study on the isolated mitochondria revealed that both CUR-Mag-NLCs and curcumin have no specific mitochondrial toxicity.


Subject(s)
Curcumin , Nanoparticles , Nanostructures , Animals , Curcumin/toxicity , Drug Carriers/toxicity , Lipids/toxicity , Magnetic Phenomena , Mitochondria, Liver , Nanoparticles/toxicity , Particle Size , Rats
12.
Pharm Dev Technol ; 27(1): 19-24, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34895033

ABSTRACT

In this project, a biocompatible block copolymer including poly ethylene glycol and poly caprolactone was synthesized using ring-opening reaction. Then, the copolymer was conjugated to folic acid using lysine as a linker. Also, curcumin (CUR) was used as a therapeutic anticancer agent. Nanoprecipitation method was used to prepare CUR-loaded polymeric micelles. Different methods including Fourier-transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS) were used to characterize the prepared nanocarriers (NCs). MTT assay and hemolysis assay were used to evaluate in vitro anticancer efficiency and biocompatibility of the prepared NCs, respectively. The results proved efficiency of NCs as a drug delivery system (DDS) in various aspects such as physicochemical properties and biocompatibility. Also, in vivo results showed that NCs did not show any severe weight loss and side effects on mice, and the anti-cancer study results of the CUR-loaded NCs proved that the conjugation of folic acid on the surface of NCs as a targeting agent could increase the therapeutic efficacy of CUR.


Subject(s)
Curcumin , Neoplasms , Animals , Curcumin/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Folic Acid/chemistry , Mice , Micelles , Neoplasms/drug therapy , Polyethylene Glycols/chemistry , Polymers/chemistry
13.
Parasitol Res ; 120(12): 4049-4060, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34669034

ABSTRACT

To enhance the therapeutic effects of albendazole (ABZ) on Echinococcus granulosus protoscoleces and metacestodes, ABZ-loaded nanostructured lipid carriers (ABZ-NLCs) are prepared by the hot high-speed homogenization method. Protoscoleces and microcysts were treated in vitro with free ABZ and ABZ-NLCs (concentrations of 1, 5, and 10 µg/ml), and the corresponding effects were monitored by methylene blue exclusion test and scanning and transmission electron microscopy. Chemoprophylactic treatment was performed on Balb/C mice 1 day before intraperitoneal injection of viable protoscoleces. The drugs were administered daily by intragastric inoculation for a period of 30 days. The prophylactic efficacy was assessed based on the number and weight of cysts developed in treated mice. The ultrastructural alterations in cysts were examined by transmission electron microscopy. After 18 days, all the protoscoleces incubated with 10 µg/ml ABZ-NLCs were killed, while 51.25 ± 4.03% of the protoscoleces incubated with 10 µg/ml free ABZ were still viable. Microcysts treated with ABZ-NLCs underwent degenerative alterations in a shorter time than when free ABZ was applied. The mean weight of the cysts recovered from mice of ABZ-NLCs group was significantly lower than that of the free ABZ group (P < 0.05), yielding prophylactic efficacy of 92.45% and 38.53%, respectively. The cysts treated with ABZ-NLCs showed marked ultrastructural changes in the germinal layer. This study demonstrated that both in vitro and in vivo treatments with ABZ-NLCs are significantly more efficient than treatment with free ABZ against E. granulosus protoscoleces, metacestodes, and prevention of cyst development in mice.


Subject(s)
Cysts , Echinococcosis , Echinococcus granulosus , Albendazole , Animals , Echinococcosis/drug therapy , Echinococcosis/prevention & control , Lipids , Mice
14.
J Food Sci Technol ; 58(7): 2677-2687, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34194103

ABSTRACT

The present study compared the effects of corn starch coatings incorporated with Zataria multiflora essential oil (ZEO) and cinnamaldehyde (CIN) in conventional, nanoemulsion (NZEO) and fortified nanoemulsion (NZEOC) forms, on specific spoilage microorganisms of chicken meat and on the fate of inoculated Listeria monocytogenes during 20 days storage at 4 ± 1 °C. Based on the results of GC-MS analysis of ZEO, carvacrol (36.62%) was the most important compound of essential oil. Samples coated with the starch solution containing nanoemulsions had better antimicrobial activities than conventional forms. Also, NZEOC treatment had the best antimicrobial properties at the end of storage with the following results: Total viable count (7.96 log10 CFU/g), Psychrotrophic count (7.29 log10 CFU/g), Lactic acid bacteria (6.51 log10 CFU/g), Enterobacteriaceae count (6.98 log10 CFU/g), Mold and yeast count (5.16 log10 CFU/g) and inoculated L. monocytogenes (6.51 log10 CFU/g). Furthermore, the addition of CIN-ZEO during nanoemulsion formation (NZEOC) increased the antimicrobial properties of the samples compared to individual addition of NZEO and CIN (NZEO + CIN) to the starch solution. Therefore, corn starch coating containing NZEOC is recommended as a natural preservative to enhance the microbial stability of poultry meat.

15.
J Biomed Mater Res A ; 109(11): 2237-2254, 2021 11.
Article in English | MEDLINE | ID: mdl-34132482

ABSTRACT

This study prepared a novel three-dimensional nanocomposite scaffold by the surface modification of PCL/chitosan nanofiber/net with alginate hydrogel microlayer, hoping to have the privilege of both nanofibers and hydrogels simultaneously. Bead free randomly oriented nanofiber/net (NFN) structure composed of chitosan and polycaprolactone (PCL) was fabricated by electrospinning method. The low surface roughness, good hydrophilicity, and high porosity were obtained from the NFN structure. Then, the PCL/chitosan nanofiber/net was coated with a microlayer of alginate containing neurotrophin-3 (NT-3) and conjunctiva mesenchymal stem cells (CJMSCs) as a new stem cell source. According to the cross-sectional FESEM, the scaffold shows a two-layer structure with interconnected pores in the range of 20 µm diameter. The finding revealed that the surface modification of nanofiber/net by alginate hydrogel microlayer caused lower inflammatory response and higher proliferation of CJMSCs than the unmodified scaffold. The initial burst release of NT-3 was 69% in 3 days which followed by a sustained release up to 21 days. The RT-PCR analysis showed that the expression of Nestin, MAP-2, and ß-tubulin III genes were increased 6, 5.4, and 8.8-fold, respectively. The results revealed that the surface-modified biomimetic scaffold possesses enhanced biocompatibility and could successfully differentiate CJMSCs to the neuron-like cells.


Subject(s)
Alginates , Chitosan , Hydrogels , Materials Testing , Nanofibers/chemistry , Nerve Tissue/metabolism , Neurotrophin 3 , Tissue Engineering , Alginates/chemistry , Alginates/pharmacology , Animals , Chitosan/chemistry , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Neurotrophin 3/chemistry , Neurotrophin 3/pharmacology , Rats , Rats, Wistar
16.
Am J Cancer Res ; 11(4): 1170-1184, 2021.
Article in English | MEDLINE | ID: mdl-33948352

ABSTRACT

Colorectal cancer (CRC) is regarded as the third most common cancer worldwide. Although Regorafenib as a receptor tyrosine kinase inhibitor (RTKI) disrupts tumor growth and angiogenesis in metastatic CRC (mCRC) patients, drug resistance leads to poor prognosis and survival. Integrin-ß1 overexpression has been proposed to be the major player in this regard. Herein, the Regorafenib-resistant human colon cancer cell line (SW-48) was induced, and the Integrin-ß1 gene expression, as well as apoptosis, was assessed through the combination of small interfering RNA (siRNA) targeting Integrin-ß1 and Regorafenib/Dimethyldioctadecylammonium bromide (DDAB)-methoxy poly (ethylene glycol) (mPEG)-poly-ε-caprolactone (PCL) hybrid nanoparticles (HNPs). In the current study, Regorafenib-resistant SW-48 cell line was generated in which the Regorafenib half-maximal inhibitory concentration (IC50) for non-resistant and resistant cells was 13.5±1.5 µM and 55.1±0.8 µM, respectively. The results of DLS also demonstrated that the size and the charge of the HNPs were equal to 66.56±0.5 nm and +29.5±1.2 mv, respectively. In addition, the Integrin-ß1 gene expression was significantly higher in resistant cells than in non-resistant ones (P<0.05). The siRNA/HNP complexes in combination with Regorafenib/HNPs were accordingly identified as the most effective treatment to decrease the Integrin-ß1 gene expression and to enhance the apoptosis rate in resistant cells (P<0.001). Overall, the study indicated that combination therapy using siRNA/HNP and Regorafenib/HNPs complex could down-regulate the Integrin-ß1 gene expression and consequently trigger apoptosis, and this may potentially induce drug sensitivity.

17.
Brain Res ; 1766: 147517, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33991495

ABSTRACT

Alzheimer's disease (AD) is one of the greatest geriatric medicinal challenges of our century and is the main disease leading to dementia. Despite extensive scientific research advances, available disease-modifying treatment strategies remained limited; thus, increasing demand for new drugs. In recent years, medicinal plants attracted attention due to their potential role in dementia. In the present study, α and ß anomers of curcumin glucosides (CGs) were synthesized and evaluated for Alzheimer's treatment. CGs were synthesized by fusion reaction as a novel and easy method with more advantages (high yield, short reaction time, and low chemicals), and the products were characterized using HNMR. Wistar male rats were used to administer different treatments. They divided into control, sham, Alzheimer, and test groups (Alzheimer + α anomer and Alzheimer + ß anomer). Animals received normal saline, Scopolamine (1 mg/kg), high dose anomers, scopolamine, and two doses (12.5 and 25 mg/kg) of anomers, respectively, for 10 days. Then the Morris Water Maze (MWM) test was performed on all animals. Finally, the animals' brains were extracted and homogenized for glutathione, acetylcholine esterase activity, protein carbonyl, and lipid peroxide level detection. The escape latency and the distance towards the hidden platform in Morris water maze in the Alzheimer group were significantly higher than both the control and test groups. Besides, there were no significant differences between sham and control groups in all tests. Both anomers led to a significant increase in glutathione, and acetylcholine levels while they caused a decrease in lipid peroxidation and protein carbonyl levels in brain tissue. It seems that intranasal administration of both anomers positively influenced maze learning in scopolamine receiving subjects. Although both anomers resulted in similar biochemistry tests, a higher dose of ß anomer indicated better results than α anomer not only in behavioral tests but also in biochemical tests.


Subject(s)
Alzheimer Disease/drug therapy , Brain/drug effects , Curcumin/administration & dosage , Drug Delivery Systems/methods , Glucosides/administration & dosage , Administration, Intranasal , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Curcumin/chemical synthesis , Drug Combinations , Glucosides/chemical synthesis , Male , Maze Learning/drug effects , Maze Learning/physiology , Rats , Rats, Wistar
18.
Int J Pharm ; 600: 120479, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33722757

ABSTRACT

In the present study, with the aim of improving the permeability of methotrexate (MTX) to the brain, the lipophilic MTX prodrugs containing the ester functional moiety were synthesized. The chemical structure of synthesized prodrugs was characterized and confirmed by FT-IR, NMR and mass spectral studies. Based on the results of in vitro cytotoxic studies, all of the synthesized prodrugs led to decrease in the IC50 in 72 h on U87 cancer cell line and the best result was observed for dihexyl methotrexate (MTX-DH) in comparison with free MTX, which led to decrease the IC50 amount up to 6 folds. In addition, in vivo toxicity on Artemia salina (A. salina) showed that the lipophilic MTX prodrugs have been able to partially mask the toxic profile of free MTX, at the same concentrations. These findings were also in compliance with hemolysis assay results, which confirm that the conjugates has not made the drug more toxic. Furthermore, in vivo study in rat model, was employed to determine the simultaneous drug concentration in brain and plasma. According to the obtained results, the brain-to-plasma concentration ratios (Kp values) of MTX-DH and dioctyl methotrexate (MTX-DO) groups were significantly higher compared with free MTX. Moreover, the uptake clearance of MTX by brain parenchyma increased significantly (3.85 and 9.08-time increased for MTX-DH and MTX-DO prodrugs, respectively). These findings indicate that the synthesized lipophilic MTX prodrugs are non-toxic and able to enhance brain penetration of MTX.


Subject(s)
Methotrexate , Prodrugs , Animals , Brain , Esters , Rats , Spectroscopy, Fourier Transform Infrared
19.
Med J Islam Repub Iran ; 35: 149, 2021.
Article in English | MEDLINE | ID: mdl-35321369

ABSTRACT

Background: Tooth decay and periodontal disease are the most common chronic human and oral diseases, respectively, and bacterial plaque has a major role in their occurrence. Because of the importance of plaque control, this study was done to compare the antimicrobial effects of Nigella sativa nanoparticles and chlorhexidine emulsion on the most common dental cariogenicic bacteria. Methods: In this experimental study, the effects of 0.2% chlorhexidine mouthwash and Nigella sativa nanoparticle with different dilutions on Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Lactobacillus acidophilus, Minococcal fecalis, and Enterococcus fecalis were compared using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assessment. Data were analyzed by SPSS Version 16.0 software, and statistical tests, including an independent sample t test. Results: Mean diameters of growth inhibition zone because of the nanoemulsion of Nigella sativa nanoparticle was close to each other in different bacteria (p=0.665). In addition, there was no significant difference between these values because of different dilutions of nanoemulsion even in different microbial species (p=0.778). The MIC and lethal concentrations of Nigella sativa nanoemulsion were similar for Enterococcus faecalis and Streptococcus mutans, and it was higher than other bacteria. In comparison, the MIC and MBC values of all bacteria in chlorhexidine were lower than those of the nanoemulsion. Conclusion: MIC and MBC values showed that Nigella sativa nanoemulsion affects tooth cariogenicic bacteria. Enterococcus faecalis and Lactobacillus acidophilus were the most resistant and susceptible bacteria to this nanoparticle, respectively, while the antimicrobial effects of Nigella sativa nanoemulsion were weaker than the chlorhexidine mouthwash.

20.
MAbs ; 12(1): 1850394, 2020.
Article in English | MEDLINE | ID: mdl-33323006

ABSTRACT

Neutrophils can release DNA and granular cytoplasmic proteins that form smooth filaments of stacked nucleosomes (NS). These structures, called neutrophil extracellular traps (NETs), are involved in multiple pathological processes, and NET formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity toward intact NS but not to individual NS components, indicating that 2C5 could potentially target NS in NETs. In this study, NETs were generated in vitro using neutrophils and HL-60 cells differentiated into granulocyte-like cells. The specificity of 2C5 toward NETs was evaluated by ELISA, which showed that it binds to NETs with the specificity similar to that for purified nucleohistone substrate. Immunofluorescence showed that 2C5 stains NETs in both static and perfused microfluidic cell cultures, even after NET compaction. Modification of liposomes with 2C5 dramatically enhanced liposome association with NETs. Our results suggest that 2C5 could be used to identify and visualize NETs and serve as a ligand for NET-targeted diagnostics and therapies.


Subject(s)
Antibodies, Monoclonal, Murine-Derived , Antibody Specificity , Extracellular Traps , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/immunology , Extracellular Traps/chemistry , Extracellular Traps/immunology , HL-60 Cells , Humans , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...