Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38396879

ABSTRACT

Using the gramicidin A channel as a molecular probe, we show that tubulin binding to planar lipid membranes changes the channel kinetics-seen as an increase in the lifetime of the channel dimer-and thus points towards modification of the membrane's mechanical properties. The effect is more pronounced in the presence of non-lamellar lipids in the lipid mixture used for membrane formation. To interpret these findings, we propose that tubulin binding redistributes the lateral pressure of lipid packing along the membrane depth, making it closer to the profile expected for lamellar lipids. This redistribution happens because tubulin perturbs the lipid headgroup spacing to reach the membrane's hydrophobic core via its amphiphilic α-helical domain. Specifically, it increases the forces of repulsion between the lipid headgroups and reduces such forces in the hydrophobic region. We suggest that the effect is reciprocal, meaning that alterations in lipid bilayer mechanics caused by membrane remodeling during cell proliferation in disease and development may also modulate tubulin membrane binding, thus exerting regulatory functions. One of those functions includes the regulation of protein-protein interactions at the membrane surface, as exemplified by VDAC complexation with tubulin.


Subject(s)
Lipid Bilayers , Tubulin , Lipid Bilayers/chemistry , Tubulin/metabolism , Gramicidin/chemistry
3.
Philos Trans R Soc Lond B Biol Sci ; 377(1864): 20210324, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36189806

ABSTRACT

Mitochondria are ubiquitous organelles that play a pivotal role in the supply of energy through the production of adenosine triphosphate in all eukaryotic cells. The importance of mitochondria in cells is demonstrated in the poor survival outcomes observed in patients with defects in mitochondrial gene or RNA expression. Studies have identified that mitochondria are influenced by the cell's cytoskeletal environment. This is evident in pathological conditions such as cardiomyopathy where the cytoskeleton is in disarray and leads to alterations in mitochondrial oxygen consumption and electron transport. In cancer, reorganization of the actin cytoskeleton is critical for trans-differentiation of epithelial-like cells into motile mesenchymal-like cells that promotes cancer progression. The cytoskeleton is critical to the shape and elongation of neurons, facilitating communication during development and nerve signalling. Although it is recognized that cytoskeletal proteins physically tether mitochondria, it is not well understood how cytoskeletal proteins alter mitochondrial function. Since end-stage disease frequently involves poor energy production, understanding the role of the cytoskeleton in the progression of chronic pathology may enable the development of therapeutics to improve energy production and consumption and slow disease progression. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.


Subject(s)
Cytoskeletal Proteins , Neoplasms , Adenosine Triphosphate/metabolism , Cell Physiological Phenomena , Cytoskeletal Proteins/metabolism , Humans , Mitochondria/metabolism , Neoplasms/metabolism , RNA/metabolism
4.
J Am Chem Soc ; 144(32): 14564-14577, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35925797

ABSTRACT

The voltage-dependent anion channel (VDAC) is a ß-barrel channel of the mitochondrial outer membrane (MOM) that passively transports ions, metabolites, polypeptides, and single-stranded DNA. VDAC responds to a transmembrane potential by "gating," i.e. transitioning to one of a variety of low-conducting states of unknown structure. The gated state results in nearly complete suppression of multivalent mitochondrial metabolite (such as ATP and ADP) transport, while enhancing calcium transport. Voltage gating is a universal property of ß-barrel channels, but VDAC gating is anomalously sensitive to transmembrane potential. Here, we show that a single residue in the pore interior, K12, is responsible for most of VDAC's voltage sensitivity. Using the analysis of over 40 µs of atomistic molecular dynamics (MD) simulations, we explore correlations between motions of charged residues inside the VDAC pore and geometric deformations of the ß-barrel. Residue K12 is bistable; its motions between two widely separated positions along the pore axis enhance the fluctuations of the ß-barrel and augment the likelihood of gating. Single channel electrophysiology of various K12 mutants reveals a dramatic reduction of the voltage-induced gating transitions. The crystal structure of the K12E mutant at a resolution of 2.6 Å indicates a similar architecture of the K12E mutant to the wild type; however, 60 µs of atomistic MD simulations using the K12E mutant show restricted motion of residue 12, due to enhanced connectivity with neighboring residues, and diminished amplitude of barrel motions. We conclude that ß-barrel fluctuations, governed particularly by residue K12, drive VDAC gating transitions.


Subject(s)
Mitochondrial Membranes , Voltage-Dependent Anion Channels , Membrane Potentials , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Molecular Dynamics Simulation , Voltage-Dependent Anion Channels/metabolism
5.
Cell Mol Life Sci ; 79(7): 368, 2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35718804

ABSTRACT

Involvement of alpha-synuclein (αSyn) in Parkinson's disease (PD) is complicated and difficult to trace on cellular and molecular levels. Recently, we established that αSyn can regulate mitochondrial function by voltage-activated complexation with the voltage-dependent anion channel (VDAC) on the mitochondrial outer membrane. When complexed with αSyn, the VDAC pore is partially blocked, reducing the transport of ATP/ADP and other metabolites. Further, αSyn can translocate into the mitochondria through VDAC, where it interferes with mitochondrial respiration. Recruitment of αSyn to the VDAC-containing lipid membrane appears to be a crucial prerequisite for both the blockage and translocation processes. Here we report an inhibitory effect of HK2p, a small membrane-binding peptide from the mitochondria-targeting N-terminus of hexokinase 2, on αSyn membrane binding, and hence on αSyn complex formation with VDAC and translocation through it. In electrophysiology experiments, the addition of HK2p at micromolar concentrations to the same side of the membrane as αSyn results in a dramatic reduction of the frequency of blockage events in a concentration-dependent manner, reporting on complexation inhibition. Using two complementary methods of measuring protein-membrane binding, bilayer overtone analysis and fluorescence correlation spectroscopy, we found that HK2p induces detachment of αSyn from lipid membranes. Experiments with HeLa cells using proximity ligation assay confirmed that HK2p impedes αSyn entry into mitochondria. Our results demonstrate that it is possible to regulate αSyn-VDAC complexation by a rationally designed peptide, thus suggesting new avenues in the search for peptide therapeutics to alleviate αSyn mitochondrial toxicity in PD and other synucleinopathies.


Subject(s)
Parkinson Disease , alpha-Synuclein , HeLa Cells , Humans , Lipids , Mitochondria/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Voltage-Dependent Anion Channels/metabolism , alpha-Synuclein/metabolism
6.
Proteomics ; 22(5-6): e2100060, 2022 03.
Article in English | MEDLINE | ID: mdl-34813679

ABSTRACT

Voltage-activated complexation is the process by which a transmembrane potential drives complex formation between a membrane-embedded channel and a soluble or membrane-peripheral target protein. Metabolite and calcium flux across the mitochondrial outer membrane was shown to be regulated by voltage-activated complexation of the voltage-dependent anion channel (VDAC) and either dimeric tubulin or α-synuclein (αSyn). However, the roles played by VDAC's characteristic attributes-its anion selectivity and voltage gating behavior-have remained unclear. Here, we compare in vitro measurements of voltage-activated complexation of αSyn with three well-characterized ß-barrel channels-VDAC, MspA, and α-hemolysin-that differ widely in their organism of origin, structure, geometry, charge density distribution, and voltage gating behavior. The voltage dependences of the complexation dynamics for the different channels are observed to differ quantitatively but have similar qualitative features. In each case, energy landscape modeling describes the complexation dynamics in a manner consistent with the known properties of the individual channels, while voltage gating does not appear to play a role. The reaction free energy landscapes thus calculated reveal a non-trivial dependence of the αSyn/channel complex stability on the surface density of αSyn.


Subject(s)
Hemolysin Proteins , alpha-Synuclein , Anions/metabolism , Hemolysin Proteins/metabolism , Mitochondrial Membranes/metabolism , Voltage-Dependent Anion Channels/chemistry , Voltage-Dependent Anion Channels/metabolism , alpha-Synuclein/metabolism
8.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298976

ABSTRACT

The voltage-dependent anion channel (VDAC) is the primary regulating pathway of water-soluble metabolites and ions across the mitochondrial outer membrane. When reconstituted into lipid membranes, VDAC responds to sufficiently large transmembrane potentials by transitioning to gated states in which ATP/ADP flux is reduced and calcium flux is increased. Two otherwise unrelated cytosolic proteins, tubulin, and α-synuclein (αSyn), dock with VDAC by a novel mechanism in which the transmembrane potential draws their disordered, polyanionic C-terminal domains into and through the VDAC channel, thus physically blocking the pore. For both tubulin and αSyn, the blocked state is observed at much lower transmembrane potentials than VDAC gated states, such that in the presence of these cytosolic docking proteins, VDAC's sensitivity to transmembrane potential is dramatically increased. Remarkably, the features of the VDAC gated states relevant for bioenergetics-reduced metabolite flux and increased calcium flux-are preserved in the blocked state induced by either docking protein. The ability of tubulin and αSyn to modulate mitochondrial potential and ATP production in vivo is now supported by many studies. The common physical origin of the interactions of both tubulin and αSyn with VDAC leads to a general model of a VDAC inhibitor, facilitates predictions of the effect of post-translational modifications of known inhibitors, and points the way toward the development of novel therapeutics targeting VDAC.


Subject(s)
Anions/metabolism , Cell Respiration/physiology , Intrinsically Disordered Proteins/physiology , Mitochondrial Membranes/drug effects , Tubulin/physiology , Voltage-Dependent Anion Channels/antagonists & inhibitors , alpha-Synuclein/physiology , Amino Acid Sequence , Animals , Calcium/metabolism , Cell Respiration/drug effects , Fluoresceins/chemistry , Humans , Intrinsically Disordered Proteins/chemistry , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Kinetics , Mitochondrial Membranes/metabolism , Models, Molecular , Osmolar Concentration , Potassium Chloride/pharmacology , Protein Conformation , Protein Interaction Mapping , Protein Processing, Post-Translational , Protein Transport , Sequence Alignment , Sulfonic Acids/chemistry , Tubulin/chemistry , Voltage-Dependent Anion Channels/chemistry , Voltage-Dependent Anion Channels/physiology , alpha-Synuclein/chemistry
9.
Biochim Biophys Acta Biomembr ; 1863(9): 183643, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33971161

ABSTRACT

Regulation of VDAC by α-synuclein (αSyn) is a rich and instructive example of protein-protein interactions catalyzed by a lipid membrane surface. αSyn, a peripheral membrane protein involved in Parkinson's disease pathology, is known to bind to membranes in a transient manner. αSyn's negatively charged C-terminal domain is then available to be electromechanically trapped by the VDAC ß-barrel, a process that is observed in vitro as the reversible reduction of ion flow through a single voltage-biased VDAC nanopore. Binding of αSyn to the lipid bilayer is a prerequisite of the channel-protein interaction; surprisingly, however, we find that the strength of αSyn binding to the membrane does not correlate in any simple way with its efficiency of blocking VDAC, suggesting that the lipid-dependent conformations of the membrane-bound αSyn control the interaction. Quantitative models of the free energy landscape governing the capture and release processes allow us to discriminate between several αSyn (sub-) conformations on the membrane surface. These results, combined with known structural features of αSyn on anionic lipid membranes, point to a model in which the lipid composition determines the fraction of αSyn molecules for which the charged C terminal domain is constrained to be close, but not tightly bound, to the membrane surface and thus readily captured by the VDAC nanopore. We speculate that changes in the mitochondrial membrane lipid composition may be key regulators of the αSyn-VDAC interaction and consequently of VDAC-facilitated transport of ions and metabolites in and out of mitochondria and, i.e. mitochondrial metabolism.


Subject(s)
Lipids/chemistry , Nanopores , Voltage-Dependent Anion Channels/chemistry , alpha-Synuclein/chemistry , Models, Molecular , Molecular Conformation
10.
Cell Calcium ; 95: 102355, 2021 05.
Article in English | MEDLINE | ID: mdl-33578201

ABSTRACT

Voltage-dependent anion channel (VDAC) is the most ubiquitous channel at the mitochondrial outer membrane, and is believed to be the pathway for calcium entering or leaving the mitochondria. Therefore, understanding the molecular mechanisms of how VDAC regulates calcium influx and efflux from the mitochondria is of particular interest for mitochondrial physiology. When the Parkinson's disease (PD) related neuronal protein, alpha-synuclein (αSyn), is added to the reconstituted VDAC, it reversibly and partially blocks VDAC conductance by its acidic C-terminal tail. Using single-molecule VDAC electrophysiology of reconstituted VDAC we now demonstrate that, at CaCl2 concentrations below 150 mM, αSyn reverses the channel's selectivity from anionic to cationic. Importantly, we find that the decrease in channel conductance upon its blockage by αSyn is hugely overcompensated by a favorable change in the electrostatic environment for calcium, making the blocked state orders-of-magnitude more selective for calcium and thus increasing its net flux. -Our findings with higher calcium concentrations also demonstrate that the phenomenon of "charge inversion" is taking place at the level of a single polypeptide chain. Measurements of ion selectivity of three VDAC isoforms in CaCl2 gradient show that VDAC3 exhibits the highest calcium permeability among them, followed by VDAC2 and VDAC1, thus pointing to isoform-dependent physiological function. Mutation of the E73 residue - VDAC1 purported calcium binding site - shows that there is no measurable effect of the mutation in either open or αSyn-blocked VDAC1 states. Our results confirm VDACs involvement in calcium signaling and reveal a new regulatory role of αSyn, with clear implications for both normal calcium signaling and PD-associated mitochondrial dysfunction.


Subject(s)
Calcium/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 2/metabolism , Voltage-Dependent Anion Channels/metabolism , alpha-Synuclein/metabolism , Animals , Humans , Mice , Recombinant Proteins/metabolism
11.
Cell Calcium ; 94: 102356, 2021 03.
Article in English | MEDLINE | ID: mdl-33529977

ABSTRACT

Voltage-dependent anion channel (VDAC), the most abundant mitochondrial outer membrane protein, is important for a variety of mitochondrial functions including metabolite exchange, calcium transport, and apoptosis. While VDAC's role in shuttling metabolites between the cytosol and mitochondria is well established, there is a growing interest in understanding the mechanisms of its regulation of mitochondrial calcium transport. Here we review the current literature on VDAC's role in calcium signaling, its biophysical properties, physiological function, and pathology focusing on its importance in cardiac diseases. We discuss the specific biophysical properties of the three VDAC isoforms in mammalian cells-VDAC 1, 2, and 3-in relationship to calcium transport and their distinct roles in cell physiology and disease. Highlighting the emerging evidence that cytosolic proteins interact with VDAC and regulate its calcium permeability, we advocate for continued investigation into the VDAC interactome at the contact sites between mitochondria and organelles and its role in mitochondrial calcium transport.


Subject(s)
Biophysical Phenomena , Calcium Signaling , Disease , Mitochondria/metabolism , Voltage-Dependent Anion Channels/metabolism , Animals , Calcium Channels/metabolism , Humans
12.
ACS Nano ; 15(1): 989-1001, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33369404

ABSTRACT

We demonstrate that a naturally occurring nanopore, the voltage-dependent anion channel (VDAC) of the mitochondrion, can be used to electromechanically trap and interrogate proteins bound to a lipid surface at the single-molecule level. Electromechanically probing α-synuclein (αSyn), an intrinsically disordered neuronal protein intimately associated with Parkinson's pathology, reveals wide variation in the time required for individual proteins to unbind from the same membrane surface. The observed distributions of unbinding times span up to 3 orders of magnitude and depend strongly on the lipid composition of the membrane; surprisingly, lipid membranes to which αSyn binds weakly are most likely to contain subpopulations in which electromechanically driven unbinding is very slow. We conclude that unbinding of αSyn from the membrane surface depends not only on membrane binding affinity but also on the conformation adopted by an individual αSyn molecule on the membrane surface.


Subject(s)
Nanopores , Membrane Proteins/metabolism , Mitochondria/metabolism , Molecular Conformation , Protein Binding , alpha-Synuclein/metabolism
13.
Biophys J ; 119(12): 2584-2592, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33189678

ABSTRACT

The voltage-dependent anion channel (VDAC) is the most abundant protein in the mitochondrial outer membrane and an archetypical ß-barrel channel. Here, we study the effects of temperature on VDAC channels reconstituted in planar lipid membranes at the single- and multichannel levels within the 20°C to 40°C range. The temperature dependence of conductance measured on a single channel in 1 M KCl shows an increase characterized by a 10°C temperature coefficient Q10 = 1.22 ± 0.02, which exceeds that of the bathing electrolyte solution conductivity, Q10 = 1.17 ± 0.01. The rates of voltage-induced channel transition between the open and closed states measured on multichannel membranes also show statistically significant increases, with temperatures that are consistent with activation energy barriers of ∼10 ± 3 kcal/mol. At the same time, the gating thermodynamics, as characterized by the gating charge and voltage of equipartitioning, does not display any measurable temperature dependence. The two parameters stay within 3.2 ± 0.2 elementary charges and 30 ± 2 mV, respectively. Thus, whereas the channel kinetics, specifically its conductance and rates of gating response to voltage steps, demonstrates a clear increase with temperature, the conformational voltage-dependent equilibria are virtually insensitive to temperature. These results, which may be a general feature of ß-barrel channel gating, suggest either an entropy-driven gating mechanism or a role for enthalpy-entropy compensation.


Subject(s)
Ion Channel Gating , Voltage-Dependent Anion Channels , Kinetics , Temperature , Thermodynamics , Voltage-Dependent Anion Channels/metabolism
14.
Front Physiol ; 11: 446, 2020.
Article in English | MEDLINE | ID: mdl-32457654

ABSTRACT

There is accumulating evidence that endogenous steroids and non-polar drugs are involved in the regulation of mitochondrial physiology. Many of these hydrophobic compounds interact with the Voltage Dependent Anion Channel (VDAC). This major metabolite channel in the mitochondrial outer membrane (MOM) regulates the exchange of ions and water-soluble metabolites, such as ATP and ADP, across the MOM, thus governing mitochondrial respiration. Proteomics and biochemical approaches together with molecular dynamics simulations have identified an impressively large number of non-polar compounds, including endogenous, able to bind to VDAC. These findings have sparked speculation that both natural steroids and synthetic hydrophobic drugs regulate mitochondrial physiology by directly affecting VDAC ion channel properties and modulating its metabolite permeability. Here we evaluate recent studies investigating the effect of identified VDAC-binding natural steroids and non-polar drugs on VDAC channel functioning. We argue that while many compounds are found to bind to the VDAC protein, they do not necessarily affect its channel functions in vitro. However, they may modify other aspects of VDAC physiology such as interaction with its cytosolic partner proteins or complex formation with other mitochondrial membrane proteins, thus altering mitochondrial function.

15.
Nanoscale ; 12(20): 11070-11078, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32400834

ABSTRACT

Post-translational modifications (PTMs) of proteins are recognized as crucial components of cell signaling pathways through modulating folding, altering stability, changing interactions with ligands, and, therefore, serving multiple regulatory functions. PTMs occur as covalent modifications of the protein's amino acid side chains or the length and composition of their termini. Here we study the functional consequences of PTMs for α-synuclein (αSyn) interactions with the nanopore of the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. PTMs were mimicked by a divalent Alexa Fluor 488 sidechain attached separately at two positions on the αSyn C-terminus. Using single-channel reconstitution into planar lipid membranes, we find that such modifications change interactions drastically in both efficiency of VDAC inhibition by αSyn and its translocation through the VDAC nanopore. Analysis of the on/off kinetics in terms of an interaction "quasipotential" allows the positions of the C-terminal modifications to be determined with an accuracy of about three residues. Moreover, our results uncover a previously unobserved mechanism by which cytosolic proteins control ß-barrel channels and thus a new regulatory function for PTMs.


Subject(s)
Mitochondria, Liver , Mitochondrial Membranes , Nanopores , Protein Processing, Post-Translational , alpha-Synuclein , Animals , Mitochondria, Liver/chemistry , Mitochondria, Liver/metabolism , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Protein Transport , Rats , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
16.
Cell Mol Life Sci ; 77(18): 3691-3692, 2020 09.
Article in English | MEDLINE | ID: mdl-31919572

ABSTRACT

In the published article, an error was noticed and this has been corrected with this erratum publication.

17.
J Gen Physiol ; 152(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-31935282

ABSTRACT

Voltage-dependent anion channel (VDAC) is the major pathway for the transport of ions and metabolites across the mitochondrial outer membrane. Among the three known mammalian VDAC isoforms, VDAC3 is the least characterized, but unique functional roles have been proposed in cellular and animal models. Yet, a high-sequence similarity between VDAC1 and VDAC3 is indicative of a similar pore-forming structure. Here, we conclusively show that VDAC3 forms stable, highly conductive voltage-gated channels that, much like VDAC1, are weakly anion selective and facilitate metabolite exchange, but exhibit unique properties when interacting with the cytosolic proteins α-synuclein and tubulin. These two proteins are known to be potent regulators of VDAC1 and induce similar characteristic blockages (on the millisecond time scale) of VDAC3, but with 10- to 100-fold reduced on-rates and altered α-synuclein blocking times, indicative of an isoform-specific function. Through cysteine scanning mutagenesis, we found that VDAC3's cysteine residues regulate its interaction with α-synuclein, demonstrating VDAC3-unique functional properties and further highlighting a general molecular mechanism for VDAC isoform-specific regulation of mitochondrial bioenergetics.


Subject(s)
Cytosol/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Protein Isoforms/metabolism , Voltage-Dependent Anion Channels/metabolism , Animals , Biology/methods , Cysteine/metabolism , Humans , Mice , Synucleins/metabolism , Voltage-Dependent Anion Channel 1/metabolism
18.
Cell Mol Life Sci ; 77(18): 3611-3626, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31760463

ABSTRACT

An intrinsically disordered neuronal protein α-synuclein (αSyn) is known to cause mitochondrial dysfunction, contributing to loss of dopaminergic neurons in Parkinson's disease. Through yet poorly defined mechanisms, αSyn crosses mitochondrial outer membrane and targets respiratory complexes leading to bioenergetics defects. Here, using neuronally differentiated human cells overexpressing wild-type αSyn, we show that the major metabolite channel of the outer membrane, the voltage-dependent anion channel (VDAC), is a pathway for αSyn translocation into the mitochondria. Importantly, the neuroprotective cholesterol-like synthetic compound olesoxime inhibits this translocation. By applying complementary electrophysiological and biophysical approaches, we provide mechanistic insights into the interplay between αSyn, VDAC, and olesoxime. Our data suggest that olesoxime interacts with VDAC ß-barrel at the lipid-protein interface thus hindering αSyn translocation through the VDAC pore and affecting VDAC voltage gating. We propose that targeting αSyn translocation through VDAC could represent a key mechanism for the development of new neuroprotective strategies.


Subject(s)
Cholestenones/pharmacology , Mitochondria/drug effects , Protective Agents/pharmacology , Voltage-Dependent Anion Channel 1/metabolism , alpha-Synuclein/metabolism , Apoptosis , Cell Line, Tumor , Cell Survival/drug effects , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Protein Binding , Protein Transport/drug effects , RNA Interference , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Voltage-Dependent Anion Channel 1/antagonists & inhibitors , Voltage-Dependent Anion Channel 1/genetics , alpha-Synuclein/genetics
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1269-1279, 2019 10.
Article in English | MEDLINE | ID: mdl-31176038

ABSTRACT

Voltage-dependent anion channel-1 (VDAC1) is a mitochondrial porin that is implicated in cellular metabolism and apoptosis, and modulated by numerous small molecules including lipids. VDAC1 binds sterols, including cholesterol and neurosteroids such as allopregnanolone. Biochemical and computational studies suggest that VDAC1 binds multiple cholesterol molecules, but photolabeling studies have identified only a single cholesterol and neurosteroid binding site at E73. To identify all the binding sites of neurosteroids in VDAC1, we apply photo-affinity labeling using two sterol-based photolabeling reagents with complementary photochemistry: 5α-6-AziP which contains an aliphatic diazirine, and KK200 which contains a trifluoromethyl-phenyldiazirine (TPD) group. 5α-6-AziP and KK200 photolabel multiple residues within an E73 pocket confirming the presence of this site and mapping sterol orientation within this pocket. In addition, KK200 photolabels four other sites consistent with the finding that VDAC1 co-purifies with five cholesterol molecules. Both allopregnanolone and cholesterol competitively prevent photolabeling at E73 and three other sites indicating that these are common sterol binding sites shared by both neurosteroids and cholesterol. Binding at the functionally important residue E73 suggests a possible role for sterols in regulating VDAC1 signaling and interaction with partner proteins.


Subject(s)
Cholesterol/metabolism , Neurosteroids/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Amino Acid Sequence , Animals , Binding Sites , Mice , Models, Molecular , Protein Binding , Voltage-Dependent Anion Channel 1/chemistry
20.
Sci Rep ; 9(1): 4580, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872688

ABSTRACT

It is well established that α-synuclein (α-syn) binding from solution to the surface of membranes composed of negatively charged and/or non-lamellar lipids can be characterized by equilibrium dissociation constants of tens of micromolar. Previously, we have found that a naturally occurring nanopore of the mitochondrial voltage-dependent anion channel (VDAC), reconstituted into planar bilayers of a plant-derived lipid, responds to α-syn at nanomolar solution concentrations. Here, using lipid mixtures that mimic the composition of mitochondrial outer membranes, we show that functionally important binding does indeed take place in the nanomolar range. We demonstrate that the voltage-dependent rate at which a membrane-embedded VDAC nanopore captures α-syn is a strong function of membrane composition. Comparison of the nanopore results with those obtained by the bilayer overtone analysis of membrane binding demonstrates a pronounced correlation between the two datasets. The stronger the binding, the larger the on-rate, but with some notable exceptions. This leads to a tentative model of α-syn-membrane interactions, which assigns different lipid-dependent roles to the N- and C-terminal domains of α-syn accounting for both electrostatic and hydrophobic effects. As a result, the rate of α-syn capture by the nanopore is not simply proportional to the α-syn concentration on the membrane surface but found to be sensitive to the specific interactions of each domain with the membrane and nanopore.


Subject(s)
Cell Membrane/metabolism , Protein Interaction Domains and Motifs , Voltage-Dependent Anion Channels/metabolism , alpha-Synuclein/metabolism , Algorithms , Animals , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Mice , Mitochondrial Membranes/metabolism , Models, Biological , Nanopores , Protein Binding , Voltage-Dependent Anion Channels/chemistry , alpha-Synuclein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...