Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 141(14): 1708-1717, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36599086

ABSTRACT

The downstream signaling of the interleukin-7 (IL-7) receptor (IL-7R) plays important physiological and pathological roles, including the differentiation of lymphoid cells and proliferation of acute lymphoblastic leukemia cells. Gain-of-function mutations in the IL-7Rα chain, the specific component of the receptor for IL-7, result in constitutive, IL-7-independent signaling and trigger acute lymphoblastic leukemia. Here, we show that the loss of the phosphoinositide 5-phosphatase INPP5K is associated with increased levels of the INPP5K substrate phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) and causes an altered dynamic structure of the IL-7 receptor. We discovered that the IL-7Rα chain contains a very conserved positively charged polybasic amino acid sequence in its cytoplasmic juxtamembrane region; this region establish stronger ionic interactions with negatively charged PtdIns(4,5)P2 in the absence of INPP5K, freezing the IL-7Rα chain structure. This dynamic structural alteration causes defects in IL-7R signaling, culminating in decreased expressions of EBF1 and PAX5 transcription factors, in microdomain formation, cytoskeletal reorganization, and bone marrow B-cell differentiation. Similar alterations after the reduced INPP5K expression also affected mutated, constitutively activated IL-7Rα chains that trigger leukemia development, leading to reduced cell proliferation. Altogether, our results indicate that the lipid 5-phosphatase INPP5K hydrolyzes PtdIns(4,5)P2, allowing the requisite conformational changes of the IL-7Rα chain for optimal signaling.


Subject(s)
Interleukin-7 , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Interleukin-7/genetics , Interleukin-7/metabolism , Phosphatidylinositol 4,5-Diphosphate , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , Signal Transduction/genetics
2.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33507234

ABSTRACT

The hematopoietic system is highly sensitive to perturbations in the translational machinery, of which an emerging level of regulation lies in the epitranscriptomic modification of transfer RNAs (tRNAs). Here, we interrogate the role of tRNA anticodon modifications in hematopoiesis by using mouse models of conditional inactivation of Elp3, the catalytic subunit of Elongator that modifies wobble uridine in specific tRNAs. Loss of Elp3 causes bone marrow failure by inducing death in committing progenitors and compromises the grafting activity of hematopoietic stem cells. Mechanistically, Elp3 deficiency activates a p53-dependent checkpoint in what resembles a misguided amino acid deprivation response that is accompanied by Atf4 overactivation and increased protein synthesis. While deletion of p53 rescues hematopoiesis, loss of Elp3 prompts the development of p53-mutated leukemia/lymphoma, and inactivation of p53 and Elongator cooperatively promotes tumorigenesis. Specific tRNA-modifying enzymes thus condition differentiation and antitumor fate decisions in hematopoietic stem cells and progenitors.


Subject(s)
Hematopoiesis , Histone Acetyltransferases/metabolism , RNA, Transfer/metabolism , Tumor Suppressor Protein p53/metabolism , Activating Transcription Factor 4/metabolism , Amino Acids/deficiency , Animals , Cell Line , Cell Survival , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/ultrastructure , Mice, Inbred C57BL , Protein Biosynthesis , Stress, Physiological , Unfolded Protein Response , Up-Regulation
3.
Microbes Environ ; 33(3): 272-281, 2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30089751

ABSTRACT

In the model species Streptomyces coelicolor A3(2), the uptake of chitin-degradation byproducts, mainly N,N'- diacetylchitobiose ([GlcNAc]2) and N-acetylglucosamine (GlcNAc), is performed by the ATP-binding cassette (ABC) transporter DasABC-MsiK and the sugar-phosphotransferase system (PTS), respectively. Studies on the S. coelicolor chromosome have suggested the occurrence of additional uptake systems of GlcNAc-related compounds, including the SCO6005-7 cluster, which is orthologous to the ABC transporter NgcEFG of S. olivaceoviridis. However, despite conserved synteny between the clusters in S. coelicolor and S. olivaceoviridis, homology between them is low, with only 35% of residues being identical between NgcE proteins, suggesting different binding specificities. Isothermal titration calorimetry experiments revealed that recombinant NgcESco interacts with GlcNAc and (GlcNAc)2, with Kd values (1.15 and 1.53 µM, respectively) that were higher than those of NgcE of S. olivaceoviridis (8.3 and 29 nM, respectively). The disruption of ngcESco delayed (GlcNAc)2 consumption, but did not affect GlcNAc consumption ability. The ngcESco-dasA double mutation severely decreased the ability to consume (GlcNAc)2 and abolished the induction of chitinase production in the presence of (GlcNAc)2, but did not affect the GlcNAc consumption rate. The results of these biochemical and reverse genetic analyses indicate that NgcESco acts as a (GlcNAc)2- binding protein of the ABC transporter NgcEFGSco-MsiK. Transcriptional and biochemical analyses of gene regulation demonstrated that the ngcESco gene was slightly induced by GlcNAc, (GlcNAc)2, and chitin, but repressed by DasR. Therefore, a model was proposed for the induction of the chitinolytic system and import of (GlcNAc)2, in which (GlcNAc)2 generated from chitin by chitinase produced leakily, is mainly transported via NgcEFG-MsiK and induces the expression of chitinase genes and dasABCD.


Subject(s)
ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Disaccharides/metabolism , Streptomyces coelicolor/metabolism , Acetylglucosamine/metabolism , Biological Transport , Chitin/metabolism , Chitinases/metabolism , Culture Media , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Multigene Family/genetics , Mutation , Promoter Regions, Genetic/genetics , Protein Binding , Streptomyces coelicolor/enzymology , Streptomyces coelicolor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...