Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35888451

ABSTRACT

The aim of the study was to densify samples of Paulownia Clone wood in vitro 112 and hornbeam (Carpinus betulus L.) by compression in the radial direction. Before the specimens were densified, they were subjected to plastic treatment in an ammonia solution. After densification, the compressive strength in the radial direction and the determination of the Brinell hardness in all three anatomical directions of the wood were determined. The wood swelling in humid air (98% RH) and liquid water was also determined. Paulownia wood density increased by about 280% and hornbeam wood density by 40%. The Brinell hardness parallel to the fibres increased by 49 and 390%, perpendicular by 80 and 388% for hornbeam and Paulownia, respectively. A significant increase in the compressive strength of wood in the radial direction was also observed. Densified hornbeam wood exposed to water showed a high swelling value of 153, while Paulownia wood exhibited 107%.

2.
Materials (Basel) ; 14(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34947229

ABSTRACT

Large amounts of archaeological wood are often excavated during groundworks in cities and towns. Part of the unearthed artefacts is usually saved, conserved and then presented in museums. However, if the finding contains several similar objects, some of them could potentially be further employed for some other practical purposes. The research aimed to determine the mechanical performance of the remains of wooden water mains excavated at Bóznicza street in Poznan, Poland and evaluate its potential usefulness for any practical purposes. First, wood density was determined along with its mechanical strength in compression. The density of archaeological wood identified as Scots pine was lower than contemporary pinewood (383 kg × m-3 vs. 572 kg × m-3); therefore, its mechanical properties in compression tests were also lower, as expected, making the wood unsuitable for any practical applications. However, the differences in modulus of elasticity and compressive strength were not justified by the differences in wood density. Further infrared spectroscopy and X-ray diffraction analyses revealed additional differences in chemical composition and cellulose crystallinity between archaeological and contemporary wood. The results indicated the decrease in carbohydrate content and cellulose crystallinity in degraded wood, which, in addition to wood density, apparently contribute to the deterioration in mechanical strength of archaeological wood. The case study of the excavated archaeological wooden pipes shows that they have historical value but are not useful for practical purposes. It also revealed that not only wood density but also its chemical composition and cellulose crystallinity level has a substantial impact on the wood mechanical properties, particularly in compression.

3.
Plants (Basel) ; 10(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34685857

ABSTRACT

The potential of the Paulownia hybrid for the uptake and transport of 67 elements along with the physiological response of plants cultivated in highly contaminated post-industrial wastes (flotation tailings-FT, and mining sludge-MS) was investigated. Biochar (BR) was added to substrates to limit metal mobility and facilitate plant survival. Paulownia could effectively uptake and translocate B, Ca, K, P, Rb, Re and Ta. Despite severe growth retardation, chlorophyll biosynthesis was not depleted, while an increased carotenoid content was noted for plants cultivated in waste materials. In Paulownia leaves and roots hydroxybenzoic acids (C6-C1) were dominant phenolics, and hydroxycinnamic acids/phenylpropanoids (C6-C3) and flavonoids (C6-C3-C6) were also detected. Plant cultivation in wastes resulted in quantitative changes in the phenolic fraction, and a significant drop or total inhibition of particular phenolics. Cultivation in waste materials resulted in increased biosynthesis of malic and succinic acids in the roots of FT-cultivated plants, and malic and acetic acids in the case of MS/BR substrate. The obtained results indicate that the addition of biochar can support the adaptation of Paulownia seedlings growing on MS, however, in order to limit unfavorable changes in the plant, an optimal addition of waste is necessary.

4.
Materials (Basel) ; 14(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572102

ABSTRACT

The modification of wood and its treatment with various preservatives may affect its mechanical properties, hence the knowledge of the character changes in wood caused by impregnation is of great importance. Therefore, the aim of the research was to determine the effect of impregnation, with the propolis-silane preparation (EEP-MPTMOS/TEOS) consisting of the propolis extract (EEP) and silicon compounds: 3-(trimethoxysilyl)propyl methacrylate (MPTMOS) and tetraethoxysilane (TEOS), on the bending strength of treated wood. Moreover, in the study wood treated with components of the propolis-silane formulation was used, namely 70% ethanol, the propolis extract, and silanes (MPTMOS/TEOS). In order to determine whether the impregnation of wood affects its long-term bending, creep tests were performed depending on the humidity. The impregnation of wood with the propolis extract and the propolis-silane preparation (EEP-MPTMOS/TEOS) contributed to the increase in modulus of rapture and work to maximum load values compared to the untreated wood. In dry wood condition, the wood treated with EEP and EEP-MPTMOS/TEOS was characterized by lower modulus of elasticity values than the control samples. In turn, in wet wood condition, wood treated with the propolis-silane preparation showed an increase in the MOE value. Moreover, the impregnation of wood had an influence on the wood creep process under bending loads. The treated wood was characterized by higher relative creep compliance than the untreated wood. The exception was the wood impregnated with EEP-MPTMOS/TEOS, which showed comparable relative creep compliance to the control samples. The presented results indicate that wood treated with a bio-friendly preparation based on propolis and silicon compounds can be used in various application and also in variable humidity conditions.

5.
Materials (Basel) ; 13(7)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252320

ABSTRACT

European ash (Fraxinus excelsior L.) is one of the species commonly used for wood thermal modification that improves its performance. The presented research aimed to investigate a moisture-dependent strength anisotropy of thermally-modified European ash in compression. Wood samples were modified at 180 °C and 200 °C. Their mechanical parameters were determined in the principal anatomical directions under dry (moisture content of 3%) and wet (moisture content above fibre saturation point) conditions. Effect of heat treatment temperature and moisture content on the ash wood mechanical parameters concerning each anatomical direction were determined. The results show that thermal treatment kept the intrinsic anisotropy of wood mechanical properties. It decreased wood hygroscopicity, which resulted in improved strength and elasticity measured for wet wood when compared to untreated and treated samples. Higher treatment temperature (200 °C) increased wood elasticity in compression in all the anatomical directions despite wood moisture content during the measurements. Multivariate analysis revealed that the modification temperature significantly affected the modulus of elasticity perpendicular to the grain, while in the case of compression strength, the statistically significant effect was observed only parallel to the grain. The results obtained can be useful from an industrial perspective and can serve as part of a database for further modelling purposes.

6.
Materials (Basel) ; 13(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218281

ABSTRACT

The aim of the presented study is to determine the relationship between mechanical parameters of selected wood species (Carya sp., Fagus sylvatica L., Acer platanoides L., Fraxinus excelsior L., Ulmus minor Mill.) used for the production of hand tools and drumsticks and the grain deviation angle from the rectilinear pattern. Modulus of rupture (MOR), modulus of elasticity (MOE), elastic strain and work to maximum load (WML) in the three-point bending test were determined. The results obtained show that the values of all the mechanical parameters measured for hickory wood are higher than those obtained for domestic species. As the grain deviation angle from parallelism increases, the mechanical properties of all analyzed wood species decrease. The greatest influence of grain deviation angle on mechanical parameters was recorded for the work to maximum load values.

SELECTION OF CITATIONS
SEARCH DETAIL
...