Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 944: 173719, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38839003

ABSTRACT

Soil properties influence plant physiology and growth, playing a fundamental role in shaping species niches in temperate forest ecosystems. Here, we investigated the impact of soil data quality on the performance of species distribution models (SDMs) of 41 woody plant species in Swiss forests. We compared models based on measured soil properties with those based on digitally mapped soil properties on regional (Swiss Forest Soil Maps) and global scales (SoilGrids). We first calibrated topo-climatic SDMs with measured soil data and plant species presences and absences from mature temperate forest stand plots. We developed further models using the same soil predictors, but with values extracted from digital soil maps at the nearest neighbouring plots of the Swiss National Forestry Inventory. The predictive power of SDMs without soil information compared to those with soil information, as well as measured soil information vs digitally mapped, was evaluated with metrics of model performance and variable contribution. On average, models with measured and digitally mapped soil properties performed significantly better than those without soil information. SDMs based on measured and Swiss Forest Soil Maps showed higher performance, especially for species with an 'extreme' niche position (e.g., preference for high or low pH), compared to those using SoilGrids. Nevertheless, if no regional soil maps are available, SoilGrids should be tested for their potential to improve SDMs. Moreover, among the tested soil predictors, pH, and clay content of the topsoil layers most improved the predictive power of SDMs for forest woody plants. In conclusion, we demonstrate the value of regional soil maps for predicting the distribution of woody species across strong environmental gradients in temperate forests. The improved accuracy of SDMs and insights into drivers of distribution may support forest managers in strategies supporting e.g. biodiversity conservation, or climate adaptation planning.


Subject(s)
Forests , Soil , Soil/chemistry , Switzerland , Trees , Environmental Monitoring/methods , Plants , Ecosystem , Biodiversity
2.
Mol Ecol ; 33(9): e17343, 2024 May.
Article in English | MEDLINE | ID: mdl-38596873

ABSTRACT

Mountain biota survived the Quaternary cold stages most probably in peripheral refugia and/or ice-free peaks within ice-sheets (nunataks). While survival in peripheral refugia has been broadly demonstrated, evidence for nunatak refugia is still scarce. We generated RADseq data from three mountain plant species occurring at different elevations in the southeastern European Alps to investigate the role of different glacial refugia during the Last Glacial Maximum (LGM). We tested the following hypotheses. (i) The deep Piave Valley forms the deepest genetic split in the species distributed across it, delimiting two peripheral refugia. (ii) The montane to alpine species Campanula morettiana and Primula tyrolensis survived the LGM in peripheral refugia, while high-alpine to subnival Saxifraga facchinii likely survived in several nunatak refugia. (iii) The lower elevation species suffered a strong population decline during the LGM. By contrast, the higher elevation species shows long-term stability of population sizes due to survival on permanently ice-free peaks and small population sizes at present. We found peripheral refugia on both sides of the Piave Valley, which acted as a major genetic barrier. Demographic modelling confirmed nunatak survival not only for S. facchinii but also for montane to alpine C. morettiana. Altitudinal segregation influenced the species' demographic fluctuations, with the lower elevation species showing a significant population increase at the end of the LGM, and the higher elevation species either showing decrease towards the present or stable population sizes with a short bottleneck. Our results highlight the role of nunatak survival and species ecology in the demographic history of mountain species.


Subject(s)
Altitude , Ice Cover , Refugium , Primula/genetics , Genetics, Population , Population Density , Saxifragaceae/genetics , Europe
3.
Ecol Lett ; 27(3): e14396, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38456670

ABSTRACT

Trait-based ecology has already revealed main independent axes of trait variation defining trait spaces that summarize plant adaptive strategies, but often ignoring intraspecific trait variability (ITV). By using empirical ITV-level data for two independent dimensions of leaf form and function and 167 species across five habitat types (coastal dunes, forests, grasslands, heathlands, wetlands) in the Italian peninsula, we found that ITV: (i) rotated the axes of trait variation that define the trait space; (ii) increased the variance explained by these axes and (iii) affected the functional structure of the target trait space. However, the magnitude of these effects was rather small and depended on the trait and habitat type. Our results reinforce the idea that ITV is context-dependent, calling for careful extrapolations of ITV patterns across traits and spatial scales. Importantly, our study provides a framework that can be used to start integrating ITV into trait space analyses.


Subject(s)
Ecosystem , Forests , Plant Leaves , Phenotype , Ecology
4.
Sci Rep ; 12(1): 1398, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082360

ABSTRACT

Climate change is expected to threaten endemic plants in the Alps. In this context, the factors that may modulate species responses are rarely investigated at a local scale. We analyzed eight alpine narrow endemics of the Dolomites (southeastern Alps) under different predicted climate change scenarios at fine spatial resolutions. We tested possible differences in elevation, topographic heterogeneity and velocity of climate change among areas of gained, lost, or stable climatic habitat. The negative impact of climate change ranged from moderate to severe, depending on scenario and species. Generally, range loss occurred at the lowest elevations, while gained and stable areas were located at highest elevations. For six of the species, climate change velocity had higher values in stable and gained areas than in lost ones. Our findings support the role of topographic heterogeneity in maintaining climatic microrefugia, however, the peculiar topography of the Dolomites, characterized by high altitude plateaus, resulted in high climate change velocity in areas of projected future climatic suitability. Our study supports the usefulness of multiple predictors of spatio-temporal range dynamics for regional climate-adapted management and eventual assisted colonization planning to not overlook or overestimate the potential impact of climate change locally.

5.
ACS Chem Biol ; 16(5): 905-914, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33914525

ABSTRACT

G-quadruplexes (G4s) continue to gather wide attention in the field of chemical biology as their prevalence in the human genome and transcriptome strongly suggests that they play key regulatory roles in cell biology. G4-specific, cell-permeable small molecules (G4-ligands) innovatively permit the interrogation of cellular circuitries in order to assess to what extent G4s influence cell fate and functions. Here, we report on multivalent, biomimetic G4-ligands referred to as TASQs that enable both the isolation and visualization of G4s in human cells. Two biotinylated TASQs, BioTASQ and BioCyTASQ, are indeed efficient molecular tools to isolate G4s from mixtures of nucleic acids through simple affinity capture protocols and to image G4s in cells via a biotin/avidin pretargeted imaging system first applied here to G4s, found to be a reliable alternative to in situ click chemistry.


Subject(s)
Biomimetic Materials/chemical synthesis , Biomimetic Materials/isolation & purification , Nucleic Acids/chemistry , Biotinylation , Cell Membrane Permeability , Click Chemistry , G-Quadruplexes , Humans , Ligands , MCF-7 Cells , Molecular Structure , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...