Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4618, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944670

ABSTRACT

The description of physical processes with many-particle systems is a key approach to the modeling of numerous physical systems. For example in storage rings, where ultrarelativistic particles are agglomerated in dense bunches, the modeling and measurement of their phase-space distribution is of paramount importance: at any time the phase-space distribution not only determines the complete space-time evolution but also provides fundamental performance characteristics for storage ring operation. Here, we demonstrate a non-destructive tomographic imaging technique for the 2D longitudinal phase-space distribution of ultrarelativistic electron bunches. For this purpose, we utilize a unique setup, which streams turn-by-turn near-field measurements of bunch profiles at MHz repetition rates. To demonstrate the feasibility of our method, we induce a non-equilibrium state and show that the phase-space distribution microstructuring as well as the phase-space distribution dynamics can be observed in great detail. Our approach offers a pathway to control ultrashort bunches and supports, as one example, the development of compact accelerators with low energy footprints.

2.
Stud Health Technol Inform ; 293: 145-152, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35592974

ABSTRACT

BACKGROUND: Tele-rehabilitation is gaining importance due to the increasing need for objectiveness in the evaluation of patients with impaired motor functions. Low-cost marker-less motion capture systems are becoming key enabling technologies as support in the treatment of musculoskeletal diseases. OBJECTIVES: The goal of this work is to investigate the use of the Microsoft Azure Kinect device to develop a tele-rehabilitation platform for shoulder motor function recovery. The platform comprehends a set of serious games, which are fundamental to increase the patients' engagement in shoulder rehabilitation. METHODS: Starting from a set of functionalities identified together with the medical personnel of an Italian hospital, the Azure Kinect device has been used as motion capture system to interact with the serious games. Mobile applications for patients and physicians have been developed to manage the rehabilitation process. RESULTS: The solution has been tested by the involved medical personnel. It has been considered interesting and promising. Further improvements in the design of the virtual environment of the serious games are required. CONCLUSION: The presented platform is a starting point to develop a complete IT solution for the daily shoulder rehabilitation.


Subject(s)
Telerehabilitation , Video Games , Humans , Range of Motion, Articular , Recovery of Function , Shoulder , Upper Extremity
3.
J Synchrotron Radiat ; 26(Pt 5): 1514-1522, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490139

ABSTRACT

Free-electron lasers (FELs) based on superconducting accelerator technology and storage ring facilities operate with bunch repetition rates in the MHz range, and the need arises for bunch-by-bunch electron and photon diagnostics. For photon-pulse-resolved measurements of spectral distributions, fast one-dimensional profile monitors are required. The linear array detector KALYPSO (KArlsruhe Linear arraY detector for MHz-rePetition rate SpectrOscopy) has been developed for electron bunch or photon pulse synchronous read-out with frame rates of up to 2.7 MHz. At the FLASH facility at DESY, a current version of KALYPSO with 256 pixels has been installed at a grating spectrometer as online diagnostics to monitor the pulse-resolved spectra of the high-repetition-rate FEL pulses. Application-specific front-end electronics based on MicroTCA standard have been developed for data acquisition and processing. Continuous data read-out with low latency in the microsecond range enables the integration into fast feedback applications. In this paper, pulse-resolved FEL spectra recorded at 1.0 MHz repetition rate for various operation conditions at FLASH are presented, and the first application of an adaptive feedback for accelerator control based on photon beam diagnostics is demonstrated.


Subject(s)
Refractometry/instrumentation , Electrons , Equipment Design , Lasers , Photons , Scattering, Radiation , Synchrotrons
SELECTION OF CITATIONS
SEARCH DETAIL
...