Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 13(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33374968

ABSTRACT

In this study, eight food by-products were investigated as biosorbent approaches in removing mycotoxin load towards potential dietary inclusion in animal feed. Among these food-derived by-products, grape seed (GSM) and seabuckthorn (SBM) meals showed the most promising binding capacity for Aflatoxin B1 (AFB1) and Zearalenone (ZEA), measured as percent of adsorbed mycotoxin. Furthermore, we explored the mycotoxin sequestering potential by screening the effect of time, concentration, temperature and pH. Comparative binding efficacy was addressed by carrying out adsorption experiments in vitro. The highest mycotoxin adsorption was attained using 30 mg of by-product for both GSM (85.9% AFB1 and 83.7% ZEA) and SBM (68% AFB1 and 84.5% ZEA). Optimal settings for the experimental factors were predicted employing the response surface design. GSM was estimated to adsorb AFB1 optimally at a concentration of 29 mg/mL, pH 5.95 and 33.6 °C, and ZEA using 28 mg/mL at pH 5.76 and 31.7 °C. Favorable adsorption of AFB1 was estimated at 37.5 mg of SBM (pH 8.1; 35.6 °C), and of ZEA at 30.2 mg of SBM (pH 5.6; 29.3 °C). Overall, GSM revealed a higher binding capacity compared with SBM. In addition, the two by-products showed different specificity for the binary-mycotoxin system, with SBM having higher affinity towards ZEA than AFB1 (Kf = 0.418 and 1/n = 0.213 vs. Kf = 0.217 and 1/n = 0.341) and GSM for AFB1 in comparison with ZEA (Kf = 0.367 and 1/n = 0.248 vs. Kf = 0.343 and 1/n = 0.264). In conclusion, this study suggests that GSM and SBM represent viable alternatives to commercial biosorbent products.


Subject(s)
Aflatoxin B1/chemistry , Industrial Waste/analysis , Zearalenone/chemistry , Adsorption , Food Industry
2.
Nutrients ; 10(5)2018 May 09.
Article in English | MEDLINE | ID: mdl-29747456

ABSTRACT

The absorption and antioxidant activity of polyphenols from grape pomace (GP) are important aspects of its valorization as a feed additive in the diet of weaned piglets. This study aimed to evaluate the presence of polyphenols from GP both in vitro in IPEC cells and in vivo in the duodenum and colon of piglets fed with diets containing or not 5% GP and also to compare and correlate the aspects of their in vitro and in vivo absorption. Total polyphenolic content (TPC) and antioxidant status (TAS, CAT, SOD and GPx enzyme activity, and lipid peroxidation-TBARS level) were assessed in duodenum and colon of piglets fed or not a diet with 5% GP. The results of UV-Vis spectroscopy demonstrated that in cellular and extracellular medium the GP polyphenols were oxidized (between λmax = 276 nm and λmax = 627.0 nm) with the formation of o-quinones and dimers. LC-MS analysis indicated a procyanidin trimer possibly C2, and a procyanidin dimer as the major polyphenols identified in GP, 12.8% of the procyanidin trimer and 23% of the procyanidin dimer respectively being also found in the compound feed. Procyanidin trimer C2 is the compound accumulated in duodenum, 73% of it being found in the colon of control piglets, and 62.5% in the colon of GP piglets. Correlations exist between the in vitro and in vivo investigations regarding the qualitative evaluation of GP polyphenols in the cells (λmax at 287.1 nm) and in the gut (λmax at 287.5 nm), as oxidated metabolic products. Beside the presence of polyphenols metabolites this study shows also the presence of the unmetabolized procyanidin trimers in duodenum and colon tissue, an important point in evaluating the benefic actions of these molecules at intestinal level. Moreover the in vivo study shows that a 5% GP in piglet’s diet increased the total antioxidant status (TAS) and decreased lipid peroxidantion (TBARS) in both duodenum and colon, and increased SOD activity in duodenum and CAT and GPx activity in colon. These parameters are modulated by the different polyphenols absorbed, mainly by the procyanidin trimers and catechin on one side and the polyphenols metabolites on the other side.


Subject(s)
Intestinal Absorption/drug effects , Polyphenols/pharmacokinetics , Vitis/chemistry , Animals , Animals, Newborn , Antioxidants/pharmacokinetics , Biflavonoids/pharmacokinetics , Catalase/metabolism , Catechin/pharmacokinetics , Cell Survival/drug effects , Diet/veterinary , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Glutathione Peroxidase/metabolism , Intestine, Small/cytology , Intestine, Small/drug effects , Intestine, Small/metabolism , Lipid Peroxidation/drug effects , Plant Extracts/pharmacokinetics , Proanthocyanidins/pharmacokinetics , Superoxide Dismutase/metabolism , Swine , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...