Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687475

ABSTRACT

This theoretical study analyzes the possibility to use the classical Mott's hypothesis to model the natural fragmentation of cylindrical structures with two or more metal cylinders arranged coaxially. A critical analysis on the validity of the used hypothesis was conducted based on empirical relations and numerical simulations. The established algorithm allows the determination of a fragment mass scale parameter for each individual cylinder, which is why the cumulative distribution of fragments for the entire structure may be calculated. The results obtained for the structures with two and three cylinders, with equal masses or equal wall thicknesses, can be approximated using a modified Mott's distribution formula in which the number of cylinders is used as an additional parameter.

2.
Materials (Basel) ; 16(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37374439

ABSTRACT

Based on the analysis of existing collective shockwave protection methods worldwide, this paper addresses the mitigation of shock waves by means of passive methods, namely the use of perforated plates. Employing specialized software for numerical analysis, such as ANSYS-AUTODYN 2022R1®, the interaction of shock waves with a protection structure has been studied. By using this cost-free approach, several configurations with different opening ratios were investigated, pointing out the peculiarities of the real phenomenon. The FEM-based numerical model was calibrated by employing live explosive tests. The experimental assessments were performed for two configurations, with and without a perforated plate. The numerical results were expressed in terms of force acting on an armor plate placed behind a perforated plate at a relevant distance for ballistic protection in engineering applications. By investigating the force/impulse acting on a witness plate instead of the pressure measured at a single point, a realistic scenario can be considered. For the total impulse attenuation factor, the numerical results suggest a power law dependence, with the opening ratio as a variable.

3.
Materials (Basel) ; 15(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35591391

ABSTRACT

Young's modulus is a key parameter of materials. The method of its calculation in the current paper is concerned with the mismatch of the mechanical impedance at the bar/specimen interface for a compression SHPB (split Hopkinson pressure bar) test. By using long and thin specimens, the signal recorded in the transmission bar presents itself as a multistep signal. The ratio between the heights of two successive steps represents the experimental data that are considered in the formula of the elastic modulus this article is devoted to. The oscillatory nature of the real signals on the horizontal or quasi-horizontal segments prevents a precise determination of the two successive step heights ratio. A fine tuning of this value is made based on the characteristic time necessary for the signal to rise from one level to the next one. The FEM (Finite Element Method) simulations are also used in calculation of the Poisson coefficient of the tested complex concentrated alloy.

4.
Materials (Basel) ; 13(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003363

ABSTRACT

Lightweight complex concentrated alloys (LWCCA), composed of elements with low density, have become a great area of interest due to the high demand in a large number of applications. Previous research on LWCCAs was focused on high entropy multicomponent alloy systems that provide low density and high capability of solid solution formation. Present research introduces two alloy systems (Al-Cu-Si-Zn-Mg and Al-Mn-Zn-Mg-Si) that contain readily available and inexpensive starting materials and have potential for solid solution formation structures. For the selection of appropriate compositions, authors applied semi-empirical criteria and optimization software. Specialized modeling software (MatCalc) was used to determine probable alloy structures by CALPHAD, non-equilibrium solidification and kinetic simulations. The selected alloys were prepared in an induction furnace. Specimens were heat treated to provide stable structures. Physicochemical, microstructural, and mechanical characterization was performed for the selected alloy compositions. Modeling and experimental results indicated solid solution-based structures in the as-cast and heat-treated samples. Several intermetallic phases were present at higher concentrations than in the conventional alloys. Alloys presented a brittle structure with compression strength of 486-618 MPa and hardness of 268-283 HV. The potential for uniform intermetallic phase distribution in the selected alloys makes them good candidates for applications were low weight and high resistance is required.

SELECTION OF CITATIONS
SEARCH DETAIL
...