Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
BMC Musculoskelet Disord ; 25(1): 453, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849773

ABSTRACT

BACKGROUND: Posttraumatic wrist osteoarthritis is an irreversible and often progressive condition. Many surgical treatments, used in (daily) practice, aim to relieve symptoms like pain and restore function. The aim of this systematic review is to assess the patient reported and functional outcomes of the most common surgical interventions in patients with posttraumatic wrist osteoarthritis. This overview can help clinicians select the best treatment and manage patient's expectations. METHODS: A literature search was performed in Pubmed, Embase and Cochrane for articles published between 1990 and November 2022 according to the PRISMA guidelines. The study protocol has been registered in the PROSPERO database (CRD42017080427). Studies that describe patient reported outcomes (pain and Disability of Arm, Shoulder and Hand (DASH) -score) and functional outcomes (range of motion (ROM) and grip strength) after surgical intervention with a minimal follow-up of 1 year were included. The identified surgical procedures included denervation, proximal row carpectomy, interpositional- and total arthroplasty, and midcarpal-, radiocarpal- and total arthrodesis. The pre-and postoperative outcomes were pooled and presented per salvage procedure. RESULTS: Data from 50 studies was included. Pain score improved after all surgeries except denervation. Flexion/extension decreased after radiocarpal arthrodesis, did not show significant changes after proximal row carpectomy, and improved for all other surgeries. DASH score improved after arthroplasty, proximal row carpectomy and midcarpal arthrodesis. Grip strength improved after interposition arthroplasty and partial arthrodesis. CONCLUSION: Evidence from this review did not support the indication for denervation in this particular patient population. In patients with SLAC/SNAC II, proximal row carpectomy might be favourable to a midcarpal arthrodesis solely based on better FE ROM of the radiocarpal joint after proximal row carpectomy. In terms of radiocarpal mobility, total wrist arthroplasty might be preferred to radiocarpal arthrodesis in patients with osteoarthritis after a distal radius fracture. More uniform measurements of outcomes would improve the understanding of the effect of surgical treatments of the posttraumatic osteoarthritic wrist.


Subject(s)
Osteoarthritis , Patient Reported Outcome Measures , Range of Motion, Articular , Salvage Therapy , Wrist Joint , Humans , Osteoarthritis/surgery , Wrist Joint/surgery , Wrist Joint/physiopathology , Salvage Therapy/methods , Arthrodesis/methods , Hand Strength , Treatment Outcome , Wrist Injuries/surgery , Wrist Injuries/physiopathology , Recovery of Function , Denervation/methods
2.
J Biomed Mater Res A ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38465895

ABSTRACT

Currently available focal knee resurfacing implants (FKRIs) are fully or partially composed of metals, which show a large disparity in elastic modulus relative to bone and cartilage tissue. Although titanium is known for its excellent osseointegration, the application in FKRIs can lead to potential stress-shielding and metal implants can cause degeneration of the opposing articulating cartilage due to the high resulting contact stresses. Furthermore, metal implants do not allow for follow-up using magnetic resonance imaging (MRI).To overcome the drawbacks of using metal based FKRIs, a biomimetic and MRI compatible bi-layered non-resorbable thermoplastic polycarbonate-urethane (PCU)-based FKRI was developed. The objective of this preclinical study was to evaluate the mechanical properties, biocompatibility and osteoconduction of a novel Bionate® 75D - zirconium oxide (B75D-ZrO2 ) composite material in vitro and the osseointegration of a B75D-ZrO2 composite stem PCU implant in a caprine animal model. The tensile strength and elastic modulus of the B75D-ZrO2 composite were characterized through in vitro mechanical tests under ambient and physiological conditions. In vitro biocompatibility and osteoconductivity were evaluated by exposing human mesenchymal stem cells to the B75D-ZrO2 composite and culturing the cells under osteogenic conditions. Cell activity and mineralization were assessed and compared to Bionate® 75D (B75D) and titanium disks. The in vivo osseointegration of implants containing a B75D-ZrO2 stem was compared to implants with a B75D stem and titanium stem in a caprine large animal model. After a follow-up of 6 months, bone histomorphometry was performed to assess the bone-to-implant contact area (BIC). Mechanical testing showed that the B75D-ZrO2 composite material possesses an elastic modulus in the range of the elastic modulus reported for trabecular bone. The B75D-ZrO2 composite material facilitated cell mediated mineralization to a comparable extent as titanium. A significantly higher bone-to-implant contact (BIC) score was observed in the B75D-ZrO2 implants compared to the B75D implants. The BIC of B75D-ZrO2 implants was not significantly different compared to titanium implants. A biocompatible B75D-ZrO2 composite approximating the elastic modulus of trabecular bone was developed by compounding B75D with zirconium oxide. In vivo evaluation showed an significant increase of osseointegration for B75D-ZrO2 composite stem implants compared to B75D polymer stem PCU implants. The osseointegration of B75D-ZrO2 composite stem PCU implants was not significantly different in comparison to analogous titanium stem metal implants.

3.
Clin Biomech (Bristol, Avon) ; 108: 106071, 2023 08.
Article in English | MEDLINE | ID: mdl-37597385

ABSTRACT

BACKGROUND: Proximal junctional failure is a common complication attributed to the rigidity of long pedicle screw fixation constructs used for surgical correction of adult spinal deformity. Semi-rigid junctional fixation achieves a gradual transition in range of motion at the ends of spinal instrumentation, which could lead to reduced junctional stresses, and ultimately reduce the incidence of proximal junctional failure. This study investigates the biomechanical effect of different semi-rigid junctional fixation techniques in a T8-L3 finite element spine segment model. METHODS: First, degeneration of the intervertebral disc was successfully implemented by altering the height. Second, transverse process hooks, one- and two-level clamped tapes, and one- and two-level knotted tapes instrumented proximally to three-level pedicle screw fixation were validated against ex vivo range of motion data of a previous study. Finally, the posterior ligament complex forces and nucleus pulposus stresses were quantified. FINDINGS: Simulated range of motions demonstrated the fidelity of the general model and modelling of semi-rigid junctional fixation techniques. All semi-rigid junctional fixation techniques reduced the posterior ligament complex forces at the junctional zone compared to pedicle screw fixation. Transverse process hooks and knotted tapes reduced nucleus pulposus stresses, whereas clamped tapes increased nucleus pulposus stresses at the junctional zone. INTERPRETATION: The relationship between the range of motion transition and the reductions in posterior ligament complex and nucleus pulposus stresses was complex and dependent on the fixation techniques. Clinical trials are required to compare the effectiveness of semi-rigid junctional fixation techniques in terms of reducing proximal junctional failure incidence rates.


Subject(s)
Pedicle Screws , Plastic Surgery Procedures , Adult , Humans , Finite Element Analysis , Motion , Range of Motion, Articular
4.
J Orthop Res ; 40(10): 2402-2413, 2022 10.
Article in English | MEDLINE | ID: mdl-35128715

ABSTRACT

The clinical success of osteochondral implants depends significantly on their surface properties. In vivo, an implant may roughen over time which can decrease its performance. The present study investigates whether changes in the surface texture of metal and two types of polycarbonate urethane (PCU) focal knee resurfacing implants (FKRIs) occurred after 6 and 12 months of in vivo articulation with native goat cartilage. PCU implants which differed in stem stiffness were compared to investigate whether the stem fixating the implant in the bone influences surface topography. Using optical profilometry, 19 surface texture parameters were evaluated, including spatial distribution and functional parameters obtained from the material ratio curve. For metal implants, wear during in vivo articulation occurred mainly via material removal, as shown by the significant decrease of the core-valley transition from 91.5% in unused implants to 90% and 89.6% after 6 and 12 months, respectively. Conversely, for PCU implants, the wear mechanism consisted in either filling of the valleys or flattening of the surface by dulling of sharp peaks. This was illustrated in the change in roughness skewness from negative to positive values over 12 months of in vivo articulation. Implants with a softer stem experienced the most deformation, shown by the largest change in material ratio curve parameters. We therefore showed, using a detailed surface profilometry analysis, that the surface texture of metal and two different PCU FKRIs changes in a different way after articulation against cartilage, revealing distinct wear mechanisms of different implant materials.


Subject(s)
Goats , Knee Prosthesis , Animals , Surface Properties , Urethane
5.
Spine (Phila Pa 1976) ; 47(9): E415-E422, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34559764

ABSTRACT

STUDY DESIGN: A porcine cadaveric biomechanical study. OBJECTIVE: To biomechanically evaluate a novel Cable Anchor System as semi-rigid junctional fixation technique for the prevention of proximal junctional failure after adult spinal deformity surgery and to make a comparison to alternative promising prophylactic techniques. SUMMARY OF BACKGROUND DATA: The abrupt change of stiffness at the proximal end of a pedicle screw construct is a major risk factor for the development of proximal junctional failure after adult spinal deformity surgery. A number of techniques that aim to provide a gradual transition zone in range of motion (ROM) at the proximal junction have previously been studied. In this study, the design of a novel Cable Anchor System, which comprises a polyethylene cable for rod fixation, is assessed. METHODS: Ten T6-T13 porcine spine segments were subjected to cyclic 4 Nm pure-moment loading. The following conditions were tested: uninstrumented, 3 level pedicle screw fixation (PSF), and PSF with supplementary Cable Anchors applied proximally at 1-level (Anchor1) or 2-levels (Anchor2), transverse process hooks (TPH), and 2-level sublaminar tapes (Tape2). The normalized segmental range of motion in the junctional zone was compared using one-way analysis of variance and linear regression. RESULTS: Statistical comparison at the level proximal to PSF showed significantly lower ROMs for all techniques compared to PSF fixation alone in all movement directions. Linear regression demonstrated a higher linearity for Anchor1 (0.820) and Anchor2 (0.923) in the junctional zone in comparison to PSF (1-level: 0.529 and 2-level: 0.421). This linearity was similar to the compared techniques (TPH and Tape2). CONCLUSION: The Cable Anchor System presented in this study demonstrated a gradual ROM transition zone at the proximal end of a rigid pedicle screw construct similar to TPH and 2-level sublaminar tape semi-rigid junctional fixation constructs, while providing the benefit of preserving the posterior ligament complex.Level of Evidence: 5.


Subject(s)
Pedicle Screws , Spinal Fusion , Animals , Biomechanical Phenomena , Humans , Neurosurgical Procedures , Range of Motion, Articular , Spinal Fusion/methods , Swine
6.
Orthop J Sports Med ; 9(10): 23259671211031244, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34676269

ABSTRACT

BACKGROUND: Focal cartilage defects are often debilitating, possess limited potential for regeneration, are associated with increased risk of osteoarthritis, and are predictive for total knee arthroplasty. Cartilage repair studies typically focus on the outcome in younger patients, but a high proportion of treated patients are 40 to 60 years of age (ie, middle-aged). The reality of current clinical practice is that the ideal patient for cartilage repair is not the typical patient. Specific attention to cartilage repair outcomes in middle-aged patients is warranted. PURPOSE: To systematically review available literature on knee cartilage repair in middle-aged patients and include studies comparing results across different age groups. STUDY DESIGN: Systematic review; Level of evidence, 4. METHODS: A systematic search was performed in EMBASE, MEDLINE, and the Cochrane Library database. Articles were screened for relevance and appraised for quality. RESULTS: A total of 21 articles (mean Coleman Methodology Score, 64 points) were included. Two out of 3 bone marrow stimulation (BMS) studies, including 1 using the microfracture technique, revealed inferior clinical outcomes in middle-aged patients in comparison with younger patients. Nine cell-based studies were included showing inconsistent comparisons of results across age groups for autologous chondrocyte implantation (ACI). Bone marrow aspirate concentrate showed age-independent results at up to 8 years of follow-up. A negative effect of middle age was reported in 1 study for both ACI and BMS. Four out of 5 studies on bone-based resurfacing therapies (allografting and focal knee resurfacing implants [FKRIs]) showed age-independent results up to 5 years. One study in only middle-aged patients reported better clinical outcomes for FKRIs when compared with biological repairs. CONCLUSION: Included studies were heterogeneous and had low methodological quality. BMS in middle-aged patients seems to only result in short-term improvements. More research is warranted to elucidate the ameliorating effects of cell-based therapies on the aging joint homeostasis. Bone-based therapies seem to be relatively insensitive to aging and may potentially result in effective joint preservation. Age subanalyses in cohort studies, randomized clinical trials, and international registries should generate more evidence for the large but underrepresented (in terms of cartilage repair) middle-aged population in the literature.

7.
Animal Model Exp Med ; 4(1): 54-58, 2021 03.
Article in English | MEDLINE | ID: mdl-33738437

ABSTRACT

Goats or sheep are the preferred animal model for the preclinical evaluation of cartilage repair techniques due to the similarity of the goat stifle joint to the human knee. The medial femoral condyle of the stifle joint is the preferred site for the assessment of articular cartilage repair, as this is the primary location for this type of lesion in the human knee. Proper surgical exposure of the medial femoral condyle is paramount to obtain reproducible results without surgical error. When applying the standard human medial arthrotomy technique on the goat stifle joint, there are some key aspects to consider in order to prevent destabilization of the extensor apparatus and subsequent postoperative patellar dislocations with associated animal discomfort. This paper describes a modified surgical technique to approach the medial femoral condyle of the caprine stifle joint. The modified technique led to satisfactory exposure without postoperative incidence of patellar luxations and no long-term adverse effects on the joint.


Subject(s)
Femur/surgery , Stifle/surgery , Animals , Cartilage, Articular/surgery , Epiphyses/surgery , Goats , Models, Animal , Orthopedic Procedures/adverse effects , Orthopedic Procedures/methods
8.
J Mech Behav Biomed Mater ; 117: 104360, 2021 05.
Article in English | MEDLINE | ID: mdl-33588212

ABSTRACT

Growth-guidance constructs are an alternative to growing rods for the surgical treatment of early onset scoliosis (EOS). Constructs containing ultra-high molecular weight polyethylene (UHMWPE) sublaminar tape have been proposed as an improvement to the traditional Luque trolley. Ideally, a certain minimum number of levels is instrumented, thus offering the best balance between providing adequate spinal fixation and minimizing surgical exposure and spinal mobility reduction. The objective of the current study was to validate a parametric FE model of the thoracolumbar spine including its ability to predict the biomechanical effects of varying the number of levels instrumented with UHMWPE sublaminar tape in a growth-guidance construct for EOS correction. In a first step, the material properties of the L4-L5 segment in the model were calibrated relative to literature data. Next, whole thoracolumbar spine behavior was verified relative to literature data as well. Subsequently, rods, screws, and sublaminar tape were implemented in the model and a simulation of a previously performed in vitro experiment, in which the range of motion (ROM) of porcine spine segments was measured for different tape configurations, was performed. Good agreement between in vitro and FE-results was found for the changes in ROM before and after instrumentation. Good agreement for changes in ROM was obtained when varying the number of instrumented levels as well, indicating that the model can be a useful tool to evaluate the effects of construct composition variations. The present study was limited by the fact that only normal spine curvatures were analyzed and the fact that results of porcine spine experiments were compared to results of human FE models. Nevertheless, the good agreement in results, even at a detailed level, supports the idea that the model can ultimately be used as a pre-operative planning tool to evaluate different construct designs. The FE model of the thoracolumbar spine was successfully validated and was able to capture the biomechanical effect of construct component variations.


Subject(s)
Orthopedic Procedures , Scoliosis , Spinal Fusion , Animals , Biomechanical Phenomena , Finite Element Analysis , Humans , Lumbar Vertebrae/surgery , Range of Motion, Articular , Scoliosis/surgery , Spine , Swine
9.
Spine J ; 21(5): 855-864, 2021 05.
Article in English | MEDLINE | ID: mdl-33493681

ABSTRACT

BACKGROUND CONTEXT: Adult spinal deformity patients treated operatively by long-segment instrumented spinal fusion are prone to develop proximal junctional kyphosis (PJK) and failure (PJF). A gradual transition in range of motion (ROM) at the proximal end of spinal instrumentation may reduce the incidence of PJK and PJF, however, previously evaluated techniques have not directly been compared. PURPOSE: To determine the biomechanical characteristics of five different posterior spinal instrumentation techniques to achieve semirigid junctional fixation, or "topping-off," between the rigid pedicle screw fixation (PSF) and the proximal uninstrumented spine. STUDY DESIGN: Biomechanical cadaveric study. METHODS: Seven fresh-frozen human cadaveric spine segments (T8-L3) were subjected to ex vivo pure moment loading in flexion-extension, lateral bending and axial rotation up to 5 Nm. The native condition, three-level PSF (T11-L2), PSF with supplemental transverse process hooks at T10 (TPH), and two sublaminar taping techniques (knotted and clamped) as one- (T10) or two-level (T9, T10) semirigid junctional fixation techniques were compared. The ROM and neutral zone (NZ) of the segments were normalized to the native condition. The linearity of the transition zones over three or four segments was determined through linear regression analysis. RESULTS: All techniques achieved a significantly reduced ROM at T10-T11 in flexion-extension and axial rotation relative to the PSF condition. Additionally, both two-level sublaminar taping techniques (CT2, KT2) had a significantly reduced ROM at T9-T10. One-level clamped sublaminar tape (CT1) had a significantly lower ROM and NZ compared with one-level knotted sublaminar tape (KT1) at T10-T11. Linear regression analysis showed the highest linear correlation between ROM and vertebral level for TPH and the lowest linear correlation for CT2. CONCLUSIONS: All studied semirigid junctional fixation techniques significantly reduced the ROM at the junctional levels and thus provide a more gradual transition than pedicle screws. TPH achieves the most linear transition over three vertebrae, whereas KT2 achieves that over four vertebrae. In contrast, CT2 effectively is a one-level semirigid junctional fixation technique with a shift in the upper rigid fixation level. Clamped sublaminar tape reduces the NZ greatly, whereas knotted sublaminar tape and TPH maintain a more physiologic NZ. Clinical validation is ultimately required to translate the biomechanics of various semirigid junctional fixation techniques into the clinical goal of reducing the incidence of proximal junctional kyphosis and failure. CLINICAL SIGNIFICANCE: The direct biomechanical comparison of multiple instrumentation techniques that aim to reduce the incidence of PJK after thoracolumbar spinal fusion surgery provides a basis upon which clinical studies could be designed. Furthermore, the data provided in this study can be used to further analyze the biomechanical effects of the studied techniques using finite element models to better predict their post-operative effectiveness.


Subject(s)
Kyphosis , Pedicle Screws , Spinal Fusion , Adult , Humans , Lumbar Vertebrae/surgery , Range of Motion, Articular , Spinal Fusion/adverse effects
10.
Spine J ; 21(5): 842-854, 2021 05.
Article in English | MEDLINE | ID: mdl-33482379

ABSTRACT

BACKGROUND CONTEXT: Correction of adult spinal deformity (ASD) by long segment instrumented spinal fusion is an increasingly common surgical intervention. However, it is associated with high rates of complications and revision surgery, especially in the elderly patient population. The high construct stiffness of instrumented thoracolumbar spinal fusion has been postulated to lead to a higher incidence of proximal junctional kyphosis (PJK) and failure (PJF). Several cadaveric biomechanical studies have reported on surgical techniques to reduce the incidence of PJF/PJK. As yet, no overview has been made of these biomechanical studies. PURPOSE: To summarize the evidence of all biomechanical studies that have assessed techniques to reduce PJK/PJF following long segment instrumented spinal fusion in the ASD patient population. STUDY DESIGN: A systematic review. METHODS: EMBASE and MEDLINE databases were searched for human and animal cadaveric biomechanical studies investigating the effect of various surgical techniques to reduce PJK/PJF following long segment instrumented thoracolumbar spinal fusion in the adult patient population. Studied techniques, biomechanical test methods, range of motion (ROM), intervertebral disc pressure (IDP) and other relevant outcome parameters were documented. RESULTS: Twelve studies met the inclusion criteria. Four of these studies included non-human cadaveric material. One study investigated the prophylactic application of cement augmentation (vertebroplasty), whereas the remaining studies investigated semi-rigid junctional fixation techniques to achieve a gradual transition zone of forces at the proximal end of a fusion construct, so-called topping-off. An increased gradual transition zone in terms of ROM compared to pedicle screw constructs was demonstrated for sublaminar tethers, sublaminar tape, pretensioned suture loops, transverse hooks and laminar hooks. Furthermore, reduced IDP was found after the application of sublaminar tethers, suture loops, sublaminar tapes and laminar hooks. Finally, two-level prophylactic vertebroplasty resulted in a lower incidence of vertebral compression fractures in a flexion-compression experiment. CONCLUSIONS: A variety of techniques, involving either posterior semi-rigid junctional fixation or the reinforcement of vertebral bodies, has been biomechanically assessed. However, the low number of studies and variation in study protocols hampers direct comparison of different techniques. Furthermore, determination of what constitutes an optimal gradual transition zone and its translation to clinical practice, would aid comparison and further development of different semi-rigid junctional fixation techniques. Even though biomechanics are extremely important in the development of PJK/PJF, patient-specific factors should always be taken into account on a case-by-case basis when considering to apply a semi-rigid junctional fixation technique.


Subject(s)
Fractures, Compression , Kyphosis , Pedicle Screws , Spinal Fractures , Spinal Fusion , Adult , Aged , Humans , Kyphosis/prevention & control , Kyphosis/surgery , Retrospective Studies , Spinal Fusion/adverse effects
11.
J Neurosurg Spine ; 34(2): 236-244, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33126215

ABSTRACT

OBJECTIVE: Complications after adult spinal deformity surgery are common, with implant-related complications occurring in up to 27.8% of cases. Sublaminar wire fixation strength is less affected by decreasing trabecular bone density in comparison to pedicle screw (PS) fixation due to the predominant cortical bone composition of the lamina. Sublaminar fixation may thus aid in decreasing implant-related complications. The goal of this study was to compare fixation characteristics of titanium sublaminar cables (SCs), ultra-high-molecular-weight polyethylene (UHMWPE) tape, PSs, and PSs augmented with UHMWPE tape in an ex vivo flexion-bending setup. METHODS: Thirty-six human cadaver vertebrae were stratified into 4 different fixation groups: UHMWPE sublaminar tape (ST), PS, metal SC, and PS augmented with ST (PS + ST). Individual vertebrae were embedded in resin, and a flexion-bending moment was applied that closely resembles the in vivo loading pattern at transitional levels of spinal instrumentation. RESULTS: The failure strength of PS + ST (4522 ± 2314 N) was significantly higher compared to the SC (2931 ± 751 N) and PS (2678 ± 827 N) groups, which had p values of 0.028 and 0.015, respectively (all values expressed as the mean ± SD). Construct stiffness was significantly higher for the PS groups compared to the stand-alone sublaminar wiring groups (p = 0.020). In contrast to SC, ST did not show any case of cortical breach. CONCLUSIONS: The higher failure strength of PS + ST compared to PS indicates that PS augmentation with ST may be an effective measure to reduce the incidence of screw pullout, even in osteoporotic vertebrae. Moreover, the lower stiffness of sublaminar fixation techniques and the absence of damage to the cortices in the ST group suggest that ST as a stand-alone fixation technique in adult spinal deformity surgery may also be clinically feasible and offer clinical benefits.

12.
J Biomed Mater Res B Appl Biomater ; 108(8): 3370-3382, 2020 11.
Article in English | MEDLINE | ID: mdl-32614486

ABSTRACT

Focal knee resurfacing implants (FKRIs) are intended to treat cartilage defects in middle-aged patients. Most FKRIs are metal-based, which hampers follow-up of the joint using magnetic resonance imaging and potentially leads to damage of the opposing cartilage. The purpose of this study was to develop a nondegradable thermoplastic polyurethane (TPU) FKRI and investigate its osseointegration. Different surface roughness modifications and biphasic calcium phosphate (BCP) coating densities were first tested in vitro on TPU discs. The in vivo osseointegration of BCP-coated TPU implants was subsequently compared to uncoated TPU implants and the titanium bottom layer of metal control implants in a caprine model. Implants were implanted bilaterally in stifle joints and animals were followed for 12 weeks, after which the bone-to-implant contact area (BIC) was assessed. Additionally, 18F-sodium-fluoride (18F-NaF) positron emission tomography PET/CT-scans were obtained at 3 and 12 weeks to visualize the bone metabolism over time. The BIC was significantly higher for the BCP-coated TPU implants compared to the uncoated TPU implants (p = .03), and did not significantly differ from titanium (p = .68). Similar 18F-NaF tracer uptake patterns were observed between 3 and 12 weeks for the BCP-coated TPU and titanium implants, but not for the uncoated implants. TPU FKRIs with surface modifications could provide the answer to the drawbacks of metal FKRIs.


Subject(s)
Coated Materials, Biocompatible/chemistry , Hydroxyapatites/chemistry , Knee/surgery , Osseointegration , Polyurethanes/chemistry , Prostheses and Implants , Animals , Calcification, Physiologic , Cells, Cultured , Fluorine Radioisotopes , Goats , Humans , Knee Prosthesis , Mesenchymal Stem Cells , Positron Emission Tomography Computed Tomography , Sodium Fluoride , Surface Properties , Titanium
13.
J Biomed Mater Res B Appl Biomater ; 106(2): 771-779, 2018 02.
Article in English | MEDLINE | ID: mdl-28346744

ABSTRACT

Polymeric sublaminar cables have a number of advantages over metal cables in the field of spinal deformity surgery, with decreased risk of neurological injury and potential for higher correction forces as the two most predominant. However, currently available polymer cables are radiolucent, precluding postoperative radiological assessment of instrumentation stability and integrity. This study provides a preclinical assessment of a woven UHMWPE cable made with radiopaque UHMWPE fibers. Our primary goal was to determine if the addition of a radiopacifier negatively affects the mechanical properties of UHMWPE woven cables. Tensile mechanical properties were determined and compared to suitable controls. Radiopacity was evaluated and radiopacifier leaching was assessed in vitro and in vivo. Finally, in vivo bismuth organ content was quantified after a 24-week implantation period in sheep. Results show that the mechanical properties of woven UHMWPE cables were not deleteriously affected by the addition of homogenously dispersed bismuth oxide particles within each fiber. Limited amounts of bismuth oxide were released in vitro, well below the toxicological threshold. Tissue concentrations lower than generally accepted therapeutic dosages for use against gastrointestinal disorders, well below toxic levels, were discovered in vivo. These results substantiate controlled clinical introduction of these radiopaque UHMWPE cables. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 771-779, 2018.


Subject(s)
Contrast Media , Internal Fixators , Materials Testing , Polyethylenes , Spine/abnormalities , Spine/surgery , Animals , Contrast Media/chemistry , Contrast Media/pharmacology , Polyethylenes/chemistry , Polyethylenes/pharmacology , Sheep
14.
J Mater Sci Mater Med ; 28(10): 148, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28828753

ABSTRACT

Loss of sagittal alignment and balance in adult spinal deformity can cause severe pain, disability and progressive neurological deficit. When conservative treatment has failed, spinal fusion using rigid instrumentation is currently the salvage treatment to stop further curve progression. However, fusion surgery is associated with high revision rates due to instrumentation failure and proximal junctional failure, especially if patients also suffer from osteoporosis. To address these drawbacks, a less rigid rod construct is proposed, which is hypothesized to provide a more gradual transition of force and load distribution over spinal segments in comparison to stiff titanium rods. In this study, the effect of variation in rod stiffness on the intradiscal pressure (IDP) of fixed spinal segments during flexion-compression loading was assessed. An ex vivo multisegment (porcine) flexion-compression spine test comparing rigid titanium rods with more flexible polycarbonate-urethane (PCU) rods was used. An increase in peak IDP was found for both the titanium and PCU instrumentation groups as compared to the uninstrumented controls. The peak IDP for the spines instrumented with the PCU rods was significantly lower in comparison to the titanium instrumentation group. These results demonstrated the differences in mechanical load transfer characteristics between PCU and titanium rod constructs when subjected to flexion-compression loading. The concept of stabilization with a less rigid rod may be an alternative to fusion with rigid instrumentation, with the aim of decreasing mechanical stress on the instrumented segments and the possible benefit of a decrease in the incidence of screw pullout.


Subject(s)
Internal Fixators , Lumbar Vertebrae , Polycarboxylate Cement , Titanium , Urethane , Animals , Biocompatible Materials , Biomechanical Phenomena , Materials Testing , Range of Motion, Articular , Spinal Fusion/instrumentation , Stress, Mechanical , Swine
15.
Biomaterials ; 82: 60-70, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26751820

ABSTRACT

There are a number of drawbacks to incorporating large concentrations of barium sulfate (BaSO4) as the radiopacifier in PMMA-based bone cements for percutaneous vertebroplasty. These include adverse effects on injectability, viscosity profile, setting time, mechanical properties of the cement and bone resorption. We have synthesized a novel cement that is designed to address some of these drawbacks. Its powder includes PMMA microspheres in which gold particles are embedded and its monomer is the same as that used in commercial cements for vertebroplasty. In comparison to one such commercial cement brand, VertaPlex™, the new cement has longer doughing time, longer injection time, higher compressive strength, higher compressive modulus, and is superior in terms of cytotoxicity. For augmentation of fractured fresh-frozen cadaveric vertebral bodies (T6-L5) using simulated vertebroplasty, results for compressive strength and compressive stiffness of the construct and the percentage of the volume of the vertebral body filled by the cement were comparable for the two cements although the radiopacity of the new cement was significantly lower than that for VertaPlex™. The present results indicate that the new cement warrants further study.


Subject(s)
Barium Sulfate/chemistry , Bone Cements/chemical synthesis , Gold/chemistry , Microspheres , Polymethyl Methacrylate/chemistry , Vertebroplasty/methods , Adhesiveness , Compressive Strength , Contrast Media , Hardness , Materials Testing , Viscosity
16.
Polymers (Basel) ; 8(6)2016 Jun 04.
Article in English | MEDLINE | ID: mdl-30979313

ABSTRACT

Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using a wide variety of polymers, cell sources, and signaling molecules have been evaluated. We start this review with basic background information on cartilage structure, its intrinsic repair, and an overview of the cartilage repair treatments from a historical perspective. Next, we thoroughly discuss polymer construct components and their current use in commercially available constructs. Finally, we provide an in-depth discussion about construct considerations such as degradation rates, cell sources, mechanical properties, joint homeostasis, and non-degradable/hybrid resurfacing techniques. As future prospects in cartilage repair, we foresee developments in three areas: first, further optimization of degradable scaffolds towards more biomimetic grafts and improved joint environment. Second, we predict that patient-specific non-degradable resurfacing implants will become increasingly applied and will provide a feasible treatment for older patients or failed regenerative treatments. Third, we foresee an increase of interest in hybrid construct, which combines degradable with non-degradable materials.

17.
Spine (Phila Pa 1976) ; 40(23): E1212-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26244403

ABSTRACT

STUDY DESIGN: An in vitro biomechanical study in porcine thoracic spine segments comparing range of motion (ROM) in segmental versus multiple nonsegmental ultrahigh molecular weight polyethylene (UHMWPE) sublaminar wire constructs. OBJECTIVE: To determine the effect of varying instrumentation (wire) density in an UHMWPE sublaminar wire construct for patients with early-onset scoliosis (EOS) to find an optimal wire density, which allows maximum growth whereas still providing adequate correction and fixation. SUMMARY OF BACKGROUND DATA: UHMWPE sublaminar wires in a segmental construct did not negatively affect longitudinal spinal growth during a 24-week period in an ovine model; application in growth guidance system for EOS may therefore be feasible. To avoid ectopic bone formation as much as possible, a reduction of instrumented levels, without affecting spinal stabilization, is desirable. METHODS: ROM of 9 porcine thoracic spines (T6-T14) was determined in flexion/extension (FE), lateral bending (LB), and axial rotation up to ±â€Š4 Nm. Tests were performed for the uninstrumented spine in a segmental construct with UHMWPE sublaminar wires and dual pedicle screws at the most caudal level, and in four nonsegmental constructs that were attained by stepwise removal of the most caudal wire. RESULTS: Segmental instrumentation led to a decrease in total ROM by approximately 70% for both FE and LB. A stepwise increase in ROM with decreasing number of consecutively instrumented levels was most clearly observed in LB. However, consistent significant but also relevant substantial differences in ROM for both FE and LB were noted only when comparing two and one consecutively instrumented end levels (P < 0.05). CONCLUSION: A construct with two consecutive end levels instrumented with UHMWPE sublaminar wires seems to provide the best balance between spinal stabilization and minimizing the number of instrumented levels and thereby surgical exposure, which is crucial for allowing longitudinal growth. LEVEL OF EVIDENCE: N/A.


Subject(s)
Bone Wires , Polyethylenes/therapeutic use , Range of Motion, Articular/physiology , Scoliosis/physiopathology , Scoliosis/surgery , Animals , Biomechanical Phenomena/physiology , Models, Biological , Swine
18.
Spine J ; 13(6): 675-88, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23582429

ABSTRACT

BACKGROUND CONTEXT: Numerous prenatal, systemic, or local procedures have been described that have created an experimental scoliosis within different animal species. Compression-based fusionless scoliosis correction devices have been used to induce scoliosis (inverse approach) as an indication for their potential corrective efficacy in large animals. Deformities that most closely approximate the three-dimensional nature of an idiopathic-like scoliosis have been created in large animals using a posterior spinal tether. Fusionless scoliosis correction devices have subsequently been tested in these models. PURPOSE: To provide an overview of large animal models used for preclinical testing of fusionless scoliosis correction devices and to describe recent advances in the creation of an idiopathic-like scoliosis large animal model. STUDY DESIGN: Literature review of large animal models in fusionless scoliosis correction research. METHODS: MEDLINE electronic database was searched for studies in which large animal models for spinal or vertebral growth modulation or the creation of an experimental scoliosis were described. The literature search was limited to articles written in the English language. RESULTS: The pig appears to be the most suitable animal species for preclinical testing of fusionless scoliosis correction devices because of its large growth potential and the possibility for early weaning. With the inverse approach, it is difficult to gain insight into the possible corrective efficacy of the tested device, and therefore, a two-step approach is preferred. Using a posterior spinal tether, persistent spinal deformities are attained when the deformity has approximately doubled in comparison to the postoperative measure in a time span of approximately 12 weeks. Sufficient tether midline offset is required to render rib procedures unnecessary. CONCLUSIONS: An idiopathic-like scoliosis animal model can be created using a posterior spinal tether in a fully reversible procedure. Experimental results will need to be reproduced to establish a standard idiopathic-like scoliosis large animal model.


Subject(s)
Disease Models, Animal , Orthopedic Procedures/methods , Scoliosis/surgery , Animals , Orthopedic Procedures/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...