Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 12(5)2022 May 08.
Article in English | MEDLINE | ID: mdl-35629828

ABSTRACT

Hybrid ceramic membranes (i.e., membranes with a layer-by-layer (LbL) coating) are an emerging technology to remove diverse kinds of micropollutants from water. Hybrid ceramic membranes were tested under laboratory conditions as single-channel (filter area = 0.00754 m2) and multi-channel (0.35 m2) variants for the removal of pharmaceuticals (sulfamethoxazole, diclofenac, clofibric acid, and ibuprofen) and typical wastewater pollutants (i.e., COD, TOC, PO4-P, and TN) from drinking water and treated wastewater. The tests were conducted with two low transmembrane pressures (TMP) of 2 and 4 bar and constant temperatures and flow velocities, which showed rejections above 80% for all the tested pharmaceuticals as well for organic pollutants and phosphorous in the treated wastewater. Tests regarding sufficient cleaning regimes also showed that the LbL coating is stable and resistant to pHs between 2 and 10 with the use of typical cleaning agents (citric acid and NaOH) but not to higher pHs, a commercially available enzymatic solution, or backwashing. The hybrid membranes can contribute to the advanced treatment of water and wastewater with low operational costs, and their application at a larger scale is viable. However, the cleaning of the membranes must be further investigated to assure the stability and durability of the LbL coating.

2.
Membranes (Basel) ; 11(4)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920279

ABSTRACT

Layer-by-Layer (LbL) technology was used to coat alumina ceramic membranes with nanosized polyelectrolyte films. The polyelectrolyte chains form a network with nanopores on the ceramic surface and promote the rejection of small molecules such as pharmaceuticals, salts and industrial contaminants, which can otherwise not be eliminated using standard ultrafiltration methods. The properties and performance of newly developed hybrid membranes are in the focus of this investigation. The homogeneity of the applied coating layer was investigated by confocal fluorescence microscopy and scanning transmission electron microscopy (STEM). Properties such as permeability, bubble point, pore size distribution and Zeta potential were determined for both pristine and LbL coated membranes using various laboratory tests. Subsequently, a thorough comparison was drawn. The charging behavior at solid-liquid interface was characterized using streaming potential techniques. The retention potential was monitored by subjecting widely used pharmaceuticals such as diclofenac, ibuprofen and sulfamethoxazol. The results prove a successful elimination of pharmaceutical contaminants, up to 84% from drinking water, by applying a combination of polyelectrolyte multilayers and ceramic membranes.

3.
Chembiochem ; 10(14): 2367-74, 2009 Sep 21.
Article in English | MEDLINE | ID: mdl-19688786

ABSTRACT

The different mammalian sphingomyelinases are involved in cell regulation, apoptosis and inflammatory events. Recent reports suggest pharmacological potential especially for inhibitors of the acid sphingomyelinase. Phosphatidyl inositol-3,5bisphosphate (PtdIns3,5P(2)) is the most potent selective acid sphingomyelinase inhibitor known to date. In the present study, we synthesized analogues of PtdIns3,5P(2) for initial structure-activity-relationship (SAR) studies. We identified an inhibitor that is easy to synthesize, that has superior chemical and biophysical properties when compared to PtdIns3,5P(2) and that should be stable against virtually all phospholipases. Last but not least, the new inhibitor partially protected cells from dexamethasone-induced cell death.


Subject(s)
Enzyme Inhibitors/chemistry , Phosphatidylinositols/chemistry , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Apoptosis , Cell Line, Tumor , Dexamethasone/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Phosphatidylinositols/chemical synthesis , Phosphatidylinositols/pharmacology , Sphingomyelin Phosphodiesterase/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...