Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(29): 24784-24790, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29952556

ABSTRACT

Metal organic framework (MOF)/polymer composite membranes are of interest for gas separations, as they often have performance that exceeds the neat polymer. However, traditional composite membranes, known as mixed matrix membranes (MMMs), can have complex and time-consuming preparation procedures. The MOF and polymer are traditionally prepared separately and require priming and mixing to ensure uniform distribution of particles and compatibility of the polymer-particle interface. In this study, we reduce the number of steps using an in situ MOF growth strategy. Herein, MMMs are prepared by growing MOF (UiO-66) in situ within a Matrimid polymer matrix while simultaneously curing the matrix. The gas separation performance for MMMs, prepared using this approach, was evaluated for the CO2/N2 separation and compared with MMMs made using the traditional postsynthesis mixing. It was found that MMMs prepared using both the in situ MOF growth strategy and by traditional postsynthesis mixing are equivalent in performance. However, using the in situ MOF growth allows for a simpler, faster, and potentially more economical fabrication alternative for MMMs.

2.
Chem Commun (Camb) ; 52(79): 11768-11771, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27722238

ABSTRACT

This study presents the fabrication of a new mixed matrix membrane using two microporous polymers: a polymer of intrinsic microporosity PIM-1 and a benzimidazole linked polymer, BILP-101, and their CO2 separation properties from post-combustion flue gas. 17, 30 and 40 wt% loadings of BILP-101 into PIM-1 were tested, resulting in mechanically stable films showing very good interfacial interaction due to the inherent H-bonding capability of the constituent materials. Gas transport studies showed that BILP-101/PIM-1 membranes exhibit high CO2 permeability (7200 Barrer) and selectivity over N2 (15). The selected hybrid membrane was further tested for CO2 separation using actual flue gas from a coal-fired power plant.

SELECTION OF CITATIONS
SEARCH DETAIL
...