Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 16: 1323431, 2023.
Article in English | MEDLINE | ID: mdl-38146334

ABSTRACT

Combined antiretroviral therapy (cART) has greatly decreased mortality and morbidity among persons with HIV; however, neurologic impairments remain prevalent, in particular HIV-associated neurocognitive disorders (HANDs). White matter damage persists in cART-treated persons with HIV and may contribute to neurocognitive dysfunction as the lipid-rich myelin membrane of oligodendrocytes is essential for efficient nerve conduction. Because of the importance of lipids to proper myelination, we examined the regulation of lipid synthesis in oligodendrocyte cultures exposed to the integrase strand transfer inhibitor elvitegravir (EVG), which is administered to persons with HIV as part of their initial regimen. We show that protein levels of genes involved in the fatty acid pathway were reduced, which correlated with greatly diminished de novo levels of fatty acid synthesis. In addition, major regulators of cellular lipid metabolism, the sterol regulatory element-binding proteins (SREBP) 1 and 2, were strikingly altered following exposure to EVG. Impaired oligodendrocyte differentiation manifested as a marked reduction in mature oligodendrocytes. Interestingly, most of these deleterious effects could be prevented by adding serum albumin, a clinically approved neuroprotectant. These new findings, together with our previous study, strengthen the possibility that antiretroviral therapy, at least partially through lipid dysregulation, may contribute to the persistence of white matter changes observed in persons with HIV and that some antiretrovirals may be preferable as life-long therapy.

2.
J Neurochem ; 165(5): 722-740, 2023 06.
Article in English | MEDLINE | ID: mdl-36718947

ABSTRACT

White matter deficits are a common neuropathologic finding in neurologic disorders, including HIV-associated neurocognitive disorders (HAND). In HAND, the persistence of white matter alterations despite suppressive antiretroviral (ARV) therapy suggests that ARVs may be directly contributing to these impairments. Here, we report that a frontline ARV, bictegravir (BIC), significantly attenuates remyelination following cuprizone-mediated demyelination, a model that recapitulates acute demyelination, but has no impact on already formed mature myelin. Mechanistic studies utilizing primary rat oligodendrocyte precursor cells (OPCs) revealed that treatment with BIC leads to significant decrease in mature oligodendrocytes accompanied by lysosomal deacidification and impairment of lysosomal degradative capacity with no alterations in lysosomal membrane permeability or total lysosome number. Activation of the endolysosomal cation channel TRPML1 prevents both lysosomal deacidification and impairment of oligodendrocyte differentiation by BIC. Lastly, we show that deacidification of lysosomes by compounds that raise lysosomal pH is sufficient to prevent maturation of oligodendrocytes. Overall, this study has uncovered a critical role for lysosomal acidification in modulating oligodendrocyte function and has implications for neurologic diseases characterized by lysosomal dysfunction and white matter abnormalities.


Subject(s)
Demyelinating Diseases , Rats , Animals , Mice , Demyelinating Diseases/pathology , Myelin Sheath/pathology , Cuprizone , Oligodendroglia/pathology , Lysosomes/pathology , Cell Differentiation , Mice, Inbred C57BL
3.
Glia ; 69(9): 2252-2271, 2021 09.
Article in English | MEDLINE | ID: mdl-34058792

ABSTRACT

Despite combined antiretroviral therapy (cART), HIV-associated neurocognitive disorder (HAND) affects 30-50% of HIV-positive patients. Importantly, persistent white matter pathologies, specifically corpus callosum thinning and disruption of white matter microstructures observed in patients with HAND despite viral control through cART, raise the possibility that HIV infection in the setting of suboptimal cART may perturb oligodendrocyte (OL) maturation, function and/or survival, influencing HAND persistence in the cART era. To examine the effect of HIV infection on OL maturation, we used supernatants of primary human monocyte-derived macrophages infected with HIV (HIV/MDMs) to treat primary cultures of rat oligodendrocyte precursor cells (OPCs) during their differentiation to mature OLs. Using immunostaining for lineage-specific markers, we found that HIV/MDMs significantly inhibited OPC maturation. Based on our previous studies, we examined the potential role of several signaling pathways, including ionotropic glutamate receptors and the integrated stress response (ISR), and found that AMPA receptors (AMPAR)/kainic acid (KA) receptors (KARs) mediated the HIV/MDMs-induced defect in OL maturation. We also found that the treatment of OPC cultures with glutamate or AMPAR/KAR agonists phenocopied this effect. Blocking ISR activation, specifically the PERK arm of the ISR, protected OPCs from HIV/MDMs-mediated inhibition of OL maturation. Further, while glutamate, AMPA, and KA activated the ISR, inhibition of AMPAR/KAR activation prevented ISR induction in OPCs and rescued OL maturation. Collectively, these data identify glutamate signaling via ISR activation as a potential therapeutic pathway to ameliorate white matter pathologies in HAND and highlight the need for further investigation of their contribution to cognitive impairment.


Subject(s)
HIV Infections , Oligodendrocyte Precursor Cells , Animals , Cell Differentiation , Cells, Cultured , Glutamic Acid/metabolism , HIV Infections/pathology , Humans , Neuroinflammatory Diseases , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Rats
4.
J Neuroimmune Pharmacol ; 16(1): 169-180, 2021 03.
Article in English | MEDLINE | ID: mdl-31776836

ABSTRACT

Despite the introduction of antiretroviral (ARV) therapy (ART), approximately 30-50% of people living with human immunodeficiency virus-1 (HIV-1) will develop a spectrum of measurable neurocognitive dysfunction, collectively called HIV-associated neurocognitive disorder (HAND). While the clinical manifestations of HAND have changed with the advent of ART, certain pathological features have endured, including white matter alterations and dysfunction. The persistence of white matter alterations in the post-ART era suggests that ARV drugs themselves may contribute to HAND pathology. Our group has previously demonstrated that two ARV compounds from the protease inhibitor (PI) class, ritonavir and lopinavir, inhibit oligodendrocyte maturation and myelin protein production. We hypothesized that other members of the PI class, saquinavir and darunavir, could also negatively impact oligodendrocyte differentiation. Here we demonstrate that treating primary rat oligodendrocyte precursor cells with therapeutically relevant concentrations of either ARV drug results in a concentration-dependent inhibition of oligodendrocyte maturation in vitro. Furthermore, we show that acidifying endolysosomal pH via a mucolipin transient receptor potential channel 1 (TRPML1) agonist provides protection against saquinavir- and darunavir-induced inhibition of oligodendrocyte maturation. Moreover, our findings suggest, for the first time, an imperative role of proper endolysosomal pH in regulating OL differentation, and that therapeutic targeting of endolysosomes may provide protection against ARV-induced oligodendrocyte dysregulation. Graphical Abstract Treatment of primary rat oligodendrocyte precursor cells with therapeutically relevant concentrations of either antiretroviral compound of the protease inhibitor class, darunavir or saquinavir, results in a concentration-dependent inhibition of oligodendrocyte maturation in vitro. Additionally, in darunavir or saquinavir-treated cultures we observed a concentration-dependent decrease in the number of acidic lysosomes, via immunostaining with LysoTracker Red, compared with vehicle-treated cultures. Finally, we showed that acidifying endolysosomal pH via a mucolipin transient receptor potential channel 1 (TRPML1) agonist provides protection against saquinavir- or darunavir-induced inhibition of oligodendrocyte maturation. Our findings suggest, for the first time, a critical role of proper endolysosomal pH in regulating OL differentation, and that therapeutic targeting of endolysosomes may provide protection against antiretroviral-induced oligodendrocyte dysregulation.


Subject(s)
Darunavir/pharmacology , Endosomes/drug effects , HIV Protease Inhibitors/pharmacology , Lysosomes/drug effects , Oligodendroglia/drug effects , Saquinavir/pharmacology , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Darunavir/toxicity , Depression, Chemical , Dose-Response Relationship, Drug , Endosomes/chemistry , HIV Protease Inhibitors/toxicity , Hydrogen-Ion Concentration , Lysosomes/chemistry , Myelin Proteins/biosynthesis , Oxidative Stress , Phthalimides/pharmacology , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Saquinavir/toxicity , Transient Receptor Potential Channels/agonists
5.
Glia ; 69(2): 362-376, 2021 02.
Article in English | MEDLINE | ID: mdl-32894619

ABSTRACT

Regardless of adherence to combined antiretroviral therapy, white matter and myelin pathologies persist in patients with HIV-associated neurocognitive disorders, a spectrum of cognitive, motor, and behavioral impairments. We hypothesized that antiretroviral therapy alters the maturation of oligodendrocytes which synthesize myelin. We tested whether specific frontline integrase strand transfer inhibitors would alter oligodendrocyte differentiation and myelination. To model the effect of antiretrovirals on oligodendrocytes, we stimulated primary rat oligodendrocyte precursor cells to differentiate into mature oligodendrocytes in vitro in the presence of therapeutically relevant concentrations of elvitegravir or raltegravir and then assessed differentiation with lineage specific markers. To examine the effect of antiretrovirals on myelination, we treated mice with the demyelinating compound cuprizone, for 5 weeks. This was followed by 3 weeks of recovery in absence of cuprizone, during which time some mice received a daily intrajugular injection of elvitegravir. Brains were harvested, sectioned and processed by immunohistochemistry to examine oligodendrocyte maturation and myelination. Elvitegravir inhibited oligodendrocyte differentiation in vitro in a concentration-dependent manner, while raltegravir had no effect. Following cuprizone demyelination, administration of elvitegravir to adult mice reduced remyelination compared with control animals. Elvitegravir treatment activated the integrated stress response in oligodendrocytes in vitro, an effect which was completely blocked by pretreatment with the integrated stress response inhibitor Trans-ISRIB, preventing elvitegravir-mediated inhibition of oligodendrocyte maturation. These studies demonstrate that elvitegravir impairs oligodendrocyte maturation and remyelination and that the integrated stress response mediates this effect and may be a possible therapeutic target.


Subject(s)
Oligodendroglia , Animals , Cell Differentiation , Cuprizone , HIV Infections , Humans , Integrases , Mice , Mice, Inbred C57BL , Myelin Sheath , Quinolones , Raltegravir Potassium , Rats
6.
Brain Res ; 1724: 146397, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31442414

ABSTRACT

While the severe cognitive effects of HIV-associated dementia have been reduced by combined antiretroviral therapy (cART), nearly half of HIV-positive (HIV+) patients still suffer from some form of HIV-Associated Neurocognitive Disorders (HAND). While frank neuronal loss has been dramatically reduced in HAND patients, white matter loss, including dramatic thinning of the corpus callosum, and loss of volume and structural integrity of myelin persists despite viral control by cART. It remains unclear whether changes in white matter underlie the clinical manifestation seen in patients or whether they are the result of persistent viral reservoirs, remnant damage from the acute infection, the antiretroviral compounds used to treat HIV, secondary effects due to peripheral toxicities or other associated comorbid conditions. Both HIV infection itself and its treatment with antiretroviral drugs can induce metabolic syndrome, lipodystrophy, atherosclerosis and peripheral neuropathies by increased oxidative stress, induction of the unfolded protein response and dysregulation of lipid metabolism. These virally and/or cART-induced processes can also cause myelin loss in the CNS. This review aims to highlight existing data on the contribution of white matter damage to HAND and explore the mechanisms by which HIV infection and its treatment contribute to persistence of white matter changes in people living with HIV currently on cART.


Subject(s)
HIV Infections/physiopathology , Oligodendroglia/metabolism , White Matter/physiopathology , AIDS Dementia Complex/etiology , AIDS Dementia Complex/physiopathology , Antiretroviral Therapy, Highly Active/adverse effects , Humans , Myelin Sheath , Neuroimmunomodulation , Peripheral Nervous System Diseases/complications , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...