Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 13(11): e0208249, 2018.
Article in English | MEDLINE | ID: mdl-30496326

ABSTRACT

Beyond its anti-fibrinolytic mechanism, tranexamic acid has been suggested to have anti-inflammatory properties which may contribute to the survival benefit it provides to trauma patients. The objective of this study was to assess possible immunomodulatory effects of tranexamic acid as well as potential amelioration of end-organ injury in a rodent hemorrhagic shock model. Controlled hemorrhagic shock was induced in adult Sprague Dawley rats to a mean arterial pressure of 30 mmHg. Groups of 10 rats were administered intravenous tranexamic acid (300mg/kg) or vehicle control (normal saline) intravenously 15 minutes after the induction of shock. After 60 minutes of hemorrhagic shock, resuscitation was started. Animals were euthanized at six, 24, or 72 hours from the start of shock. Serum laboratory values to include inflammatory biomarkers were measured, and end organ histology was evaluated. Tranexamic acid treatment was associated with a significant decrease in serum IL-1ß at six and 24 hours and IL-10 at 24 hours from start of shock compared to vehicle control. Histologic analysis demonstrated mild decreases in both perivascular pulmonary edema and follicular mesenteric lymph node hyperplasia in the tranexamic acid treatment group but also increased myocardial lymphocytic infiltration with necrosis and degeneration. Tranexamic acid was also associated with a small but significant increase in peripheral neutrophil count as well as a significant decrease in neutrophil aggregation in pulmonary tissue at six hours post-injury. These data thus demonstrate a mixed effect of tranexamic acid. While there was an improvement in pulmonary edema and a suppressive effect on several key inflammatory mediators, there was also increased myocardial degeneration and necrosis, which is possibly related to the pro-thrombotic effect of tranexamic acid.


Subject(s)
Antifibrinolytic Agents/therapeutic use , Inflammation/drug therapy , Shock, Hemorrhagic/drug therapy , Tranexamic Acid/therapeutic use , Animals , Inflammation/blood , Inflammation/etiology , Inflammation/pathology , Lung/drug effects , Lung/pathology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Male , Myocardium/pathology , Rats, Sprague-Dawley , Resuscitation/methods , Shock, Hemorrhagic/blood , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/pathology
2.
Asian J Exp Biol Sci ; 1(2): 451-459, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20953292

ABSTRACT

Nitrite was a therapeutic agent used in the treatment of angina pectoris and hypertension, but was replaced by nitroglycerin. However, nitrite has recently been rediscovered following observations that this anion possesses novel pharmacologic actions such as producing vasodilation, modulating hypoxic vasodilation, and providing cytoprotection in ischemia-reperfusion injury. Moreover, recent observations in animal and human studies have demonstrated that the reduction of nitrite to vasoactive nitric oxide occurs through both enzymatic and non-enzymatic processes. These findings suggest that nitrite may act as a storage form for nitric oxide and provide support for investigating the use of nitrite in the treatment of ischemic disease states including pulmonary hypertension.

SELECTION OF CITATIONS
SEARCH DETAIL
...