Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 58(21): 3469-3472, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35195655

ABSTRACT

Efficient immobilization of actinide wastes is challenging in the nuclear energy industry. Here, we reported that 100% substitution of Zr4+ by U6+ in a La2Zr2O7 matrix has been achieved for the first time by the molten salt (MS) method. Importantly, we observed that uranium can be precisely anchored into Zr or La sites of the La2Zr2O7 matrix, as confirmed by X-ray diffraction, Raman, and X-ray absorption spectra. This work will guide the construction of site-controlled and high-capacity actinide-immobilized pyrochlore materials and could be extended to other perovskite materials.

2.
J Synchrotron Radiat ; 28(Pt 6): 1684-1691, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34738922

ABSTRACT

The U-O phase diagram is of paramount interest for nuclear-related applications and has therefore been extensively studied. Experimental data have been gathered to feed the thermodynamic calculations and achieve an optimization of the U-O system modelling. Although considered as well established, a critical assessment of this large body of experimental data is necessary, especially in light of the recent development of new techniques applicable to actinide materials. Here we show how in situ X-ray absorption near-edge structure (XANES) is suitable and relevant for phase diagram determination. New experimental data points have been collected using this method and discussed in regard to the available data. Comparing our experimental data with thermodynamic calculations, we observe that the current version of the U-O phase diagram misses some experimental data in specific domains. This lack of experimental data generates inaccuracy in the model, which can be overcome using in situ XANES. Indeed, as shown in the paper, this method is suitable for collecting experimental data in non-ambient conditions and for multiphasic systems.

3.
Inorg Chem ; 57(23): 14890-14894, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30411877

ABSTRACT

Most materials expand with temperature because of the anharmonicity of lattice vibration, and only a few shrink with increasing temperature. UO2, whose thermal properties are of significant importance for the safe use of nuclear energy, was considered for a long time to belong to the first group. This view was challenged by recent in situ synchrotron X-ray diffraction measurements, showing an unusual thermal decrease of the U-O distances. This thermal shrinkage was interpreted as a consequence of the splitting of the U-O distances due to a change in the U local order from Fm3̅ m to Pa3̅. In contrast to these previous investigations and using an element-specific synchrotron-based spectroscopic method, we show here that the U sublattice remains locally of the fluorite type from 50 to 1265 K, and that the decrease of the first U-O bond lengths is associated with an increase of the disorder.

4.
Sensors (Basel) ; 17(1)2016 Dec 23.
Article in English | MEDLINE | ID: mdl-28025569

ABSTRACT

Surface modification of microelectrodes is a central step in the development of microsensors and microsensor arrays. Here, we present an electrodeposition scheme based on voltage pulses. Key features of this method are uniformity in the deposited electrode coatings, flexibility in the overall deposition area, i.e., the sizes and number of the electrodes to be coated, and precise control of the surface texture. Deposition and characterization of four different materials are demonstrated, including layers of high-surface-area platinum, gold, conducting polymer poly(ethylenedioxythiophene), also known as PEDOT, and the non-conducting polymer poly(phenylenediamine), also known as PPD. The depositions were conducted using a fully integrated complementary metal-oxide-semiconductor (CMOS) chip with an array of 1024 microelectrodes. The pulsed potentiostatic deposition scheme is particularly suitable for functionalization of individual electrodes or electrode subsets of large integrated microelectrode arrays: the required deposition waveforms are readily available in an integrated system, the same deposition parameters can be used to functionalize the surface of either single electrodes or large arrays of thousands of electrodes, and the deposition method proved to be robust and reproducible for all materials tested.

5.
Anal Chem ; 86(13): 6425-32, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24941330

ABSTRACT

Microelectrode arrays offer the potential to electrochemically monitor concentrations of molecules at high spatial resolution. However, current systems are limited in the number of sensor sites, signal resolution, and throughput. Here, we present a fully integrated complementary metal oxide semiconductor (CMOS) system with an array of 32 × 32 working electrodes to perform electrochemical measurements like amperometry and voltammetry. The array consists of platinum electrodes with a center-to-center distance of 100 µm and electrode diameters of 5 to 50 µm. Currents in the range from 10 µA down to pA can be measured. The current is digitized by sigma-delta converters at a maximum resolution of 13.3 bits. The integrated noise is 220 fA for a bandwidth of 100 Hz, allowing for detection of pA currents. Currents can be continuously acquired at up to 1 kHz bandwidth, or the whole array can be read out rapidly at a frame rate of up to 90 Hz. The results of the electrical characterization meet the requirements of a wide range of electrochemical methods including cyclic voltammograms and amperometric images of high spatial and temporal resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...