Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14595, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918496

ABSTRACT

There are two known mechanisms by which natural killer (NK) cells recognize and kill diseased targets: (i) direct killing and (ii) antibody-dependent cell-mediated cytotoxicity (ADCC). We investigated an indirect NK cell activation strategy for the enhancement of human NK cell killing function. We did this by leveraging the fact that toll-like receptor 9 (TLR9) agonism within pools of human peripheral blood mononuclear cells (PBMCs) results in a robust interferon signaling cascade that leads to NK cell activation. After TLR9 agonist stimulation, NK cells were enriched and incorporated into assays to assess their ability to kill tumor cell line targets. Notably, differential impacts of TLR9 agonism were observed-direct killing was enhanced while ADCC was not increased. To ensure that the observed differential effects were not attributable to differences between human donors, we recapitulated the observation using our Natural Killer-Simultaneous ADCC and Direct Killing Assay (NK-SADKA) that controls for human-to-human differences. Next, we observed a treatment-induced decrease in NK cell surface CD16-known to be shed by NK cells post-activation. Given the essential role of CD16 in ADCC, such shedding could account for the observed differential impact of TLR9 agonism on NK cell-mediated killing capacity.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Killer Cells, Natural , Toll-Like Receptor 9 , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Antibody-Dependent Cell Cytotoxicity/drug effects , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Receptors, IgG/metabolism , Receptors, IgG/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic/drug effects
2.
EBioMedicine ; 45: 328-340, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31300344

ABSTRACT

BACKGROUND: TLR9 agonists are being developed as immunotherapy against malignancies and infections. TLR9 is primarily expressed in B cells and plasmacytoid dendritic cells (pDCs). TLR9 signalling may be critically important for B cell activity in lymph nodes but little is known about the in vivo impact of TLR9 agonism on human lymph node B cells. As a pre-defined sub-study within our clinical trial investigating TLR9 agonist MGN1703 (lefitolimod) treatment in the context of developing HIV cure strategies (NCT02443935), we assessed TLR9 agonist-mediated effects in lymph nodes. METHODS: Participants received MGN1703 for 24 weeks concurrent with antiretroviral therapy. Seven participants completed the sub-study including lymph node resection at baseline and after 24 weeks of treatment. A variety of tissue-based immunologic and virologic parameters were assessed. FINDINGS: MGN1703 dosing increased B cell differentiation; activated pDCs, NK cells, and T cells; and induced a robust interferon response in lymph nodes. Expression of Activation-Induced cytidine Deaminase, an essential regulator of B cell diversification and somatic hypermutation, was highly elevated. During MGN1703 treatment IgG production increased and antibody glycosylation patterns were changed. INTERPRETATION: Our data present novel evidence that the TLR9 agonist MGN1703 modulates human lymph node B cells in vivo. These findings warrant further considerations in the development of TLR9 agonists as immunotherapy against cancers and infectious diseases. FUND: This work was supported by Aarhus University Research Foundation, the Danish Council for Independent Research and the NovoNordisk Foundation. Mologen AG provided study drug free of charge.


Subject(s)
Cell Differentiation/drug effects , DNA/administration & dosage , HIV Infections/drug therapy , Toll-Like Receptor 9/genetics , Adult , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Dendritic Cells/drug effects , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Glycosylation/drug effects , HIV Infections/genetics , HIV Infections/virology , HIV-1/drug effects , Humans , Interferon-alpha/genetics , Lymph Nodes , Lymphocyte Activation/drug effects , Male , Middle Aged , Toll-Like Receptor 9/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...