Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(42): 22979-22992, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37815921

ABSTRACT

The accurate modeling of energetic contributions to protein structure is a fundamental challenge in computational approaches to protein analysis and design. We describe a general computational method, EmCAST (empirical Cα stabilization), to score and optimize the sequence to the structure in proteins. The method relies on an empirical potential derived from the database of the Cα dihedral angle preferences for all possible four-residue sequences, using the data available in the Protein Data Bank. Our method produces stability predictions that naturally correlate one-to-one with the experimental results for solvent-exposed mutation sites. EmCAST predicted four mutations that increased the stability of a three-helix bundle, UBA(1), from 2.4 to 4.8 kcal/mol by optimizing residues in both helices and turns. For a set of eight variants, the predicted and experimental stabilizations correlate very well (R2 = 0.97) with a slope near 1 and with a 0.16 kcal/mol standard error for EmCAST predictions. Tests against literature data for the stability effects of surface-exposed mutations show that EmCAST outperforms the existing stability prediction methods. UBA(1) variants were crystallized to verify and analyze their structures at an atomic resolution. Thermodynamic and kinetic folding experiments were performed to determine the magnitude and mechanism of stabilization. Our method has the potential to enable the rapid, rational optimization of natural proteins, expand the analysis of the sequence/structure relationship, and supplement the existing protein design strategies.


Subject(s)
Protein Folding , Proteins , Proteins/genetics , Proteins/chemistry , Mutation , Databases, Protein
2.
Mol Microbiol ; 119(6): 711-727, 2023 06.
Article in English | MEDLINE | ID: mdl-37086029

ABSTRACT

PlzA is a c-di-GMP-binding protein crucial for adaptation of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi during its enzootic life cycle. Unliganded apo-PlzA is important for vertebrate infection, while liganded holo-PlzA is important for survival in the tick; however, the biological function of PlzA has remained enigmatic. Here, we report that PlzA has RNA chaperone activity that is inhibited by c-di-GMP binding. Holo- and apo-PlzA bind RNA and accelerate RNA annealing, while only apo-PlzA can strand displace and unwind double-stranded RNA. Guided by the crystal structure of PlzA, we identified several key aromatic amino acids protruding from the N- and C-terminal domains that are required for RNA-binding and unwinding activity. Our findings illuminate c-di-GMP as a switch controlling the RNA chaperone activity of PlzA, and we propose that complex RNA-mediated modulatory mechanisms allow PlzA to regulate gene expression during both the vector and host phases of the B. burgdorferi life cycle.


Subject(s)
Borrelia burgdorferi Group , Borrelia burgdorferi , Ixodes , Lyme Disease , Bacterial Proteins/metabolism , Borrelia burgdorferi/metabolism , Borrelia burgdorferi Group/genetics , Lyme Disease/genetics , RNA/metabolism
3.
Biochemistry ; 61(9): 767-784, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35430812

ABSTRACT

The structure of the first ubiquitin-associated domain from HHR23A, UBA(1), was determined by X-ray crystallography at a 1.60 Å resolution, and its stability, folding kinetics, and residual structure under denaturing conditions have been investigated. The concentration dependence of thermal denaturation and size-exclusion chromatography indicate that UBA(1) is monomeric. Guanidine hydrochloride (GdnHCl) denaturation experiments reveal that the unfolding free energy, ΔGu°'(H2O), of UBA(1) is 2.4 kcal mol-1. Stopped-flow folding kinetics indicates sub-millisecond folding with only proline isomerization phases detectable at 25 °C. The full folding kinetics are observable at 4 °C, yielding a folding rate constant, kf, in the absence of a denaturant of 13,000 s-1 and a Tanford ß-value of 0.80, consistent with a compact transition state. Evaluation of the secondary structure via circular dichroism shows that the residual helical structure in the denatured state is replaced by polyproline II structure as the GdnHCl concentration increases. Analysis of NMR secondary chemical shifts for backbone 15NH, 13CO, and 13Cα atoms between 4 and 7 M GdnHCl shows three islands of residual helical secondary structure that align in sequence with the three native-state helices. Extrapolation of the NMR data to 0 M GdnHCl demonstrates that helical structure would populate to 17-33% in the denatured state under folding conditions. Comparison with NMR data for a peptide corresponding to helix 1 indicates that this helix is stabilized by transient tertiary interactions in the denatured state of UBA(1). The high helical content in the denatured state, which is enhanced by transient tertiary interactions, suggests a diffusion-collision folding mechanism.


Subject(s)
DNA Repair , Protein Folding , Circular Dichroism , DNA , Guanidine/chemistry , Humans , Kinetics , Protein Denaturation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...