Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Ther ; 29(3): 1324-1334, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33279724

ABSTRACT

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to impaired ion transport in epithelial cells. Although lung failure due to chronic infection is the major comorbidity in individuals with cystic fibrosis, the role of CFTR in non-epithelial cells has not been definitively resolved. Given the important role of host defense cells, we evaluated the Cftr deficiency in pulmonary immune cells by hematopoietic stem cell transplantation in cystic fibrosis mice. We transplanted healthy bone marrow stem cells and could reveal a stable chimerism of wild-type cells in peripheral blood. The outcome of stem cell transplantation and the impact of healthy immune cells were evaluated in acute Pseudomonas aeruginosa airway infection. In this study, mice transplanted with wild-type cells displayed better survival, lower lung bacterial numbers, and a milder disease course. This improved physiology of infected mice correlated with successful intrapulmonary engraftment of graft-derived alveolar macrophages, as seen by immunofluorescence microscopy and flow cytometry of graft-specific leucocyte surface marker CD45 and macrophage marker CD68. Given the beneficial effect of hematopoietic stem cell transplantation and stable engraftment of monocyte-derived CD68-positive macrophages, we conclude that replacement of mutant Cftr macrophages attenuates airway infection in cystic fibrosis mice.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/therapy , Hematopoietic Stem Cell Transplantation/methods , Macrophages/immunology , Mutation , Pseudomonas Infections/therapy , Pseudomonas aeruginosa/isolation & purification , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/microbiology , Epithelial Cells/microbiology , Humans , Lung/microbiology , Macrophages/microbiology , Mice , Pseudomonas Infections/complications , Pseudomonas Infections/microbiology
2.
Toxins (Basel) ; 10(5)2018 05 04.
Article in English | MEDLINE | ID: mdl-29734720

ABSTRACT

The effector protein Exotoxin Y (ExoY) produced by Pseudomonas aeruginosa is injected via the type III secretion system (T3SS) into host cells. ExoY acts as nucleotidyl cyclase promoting the intracellular accumulation of cyclic nucleotides. To what extent nucleotidyl cyclase activity contributes to the pathogenicity of ExoY and which mechanisms participate in the manifestation of lung infection is still unclear. Here, we used an acute airway infection model in mice to address the role of ExoY in lung infection. In infected lungs, a dose-dependent phenotype of infection with bacteria-expressing ExoY was mirrored by haemorrhage, formation of interstitial oedema in alveolar septa, and infiltration of the perivascular space with erythrocytes and neutrophilic granulocytes. Analyses of the infection process on the cellular and organismal level comparing infections with Pseudomonas aeruginosa mutants expressing either nucleotidyl cyclase-active or -inactive ExoY revealed differential cytokine secretion, increased prevalence of apoptosis, and a break of lung barrier integrity in mice infected with cyclase-active ExoY. Notably, of all measured cyclic nucleotides, only the increase of cyclic UMP in infected mouse lungs coincides temporally with the observed early pathologic changes. In summary, our results suggest that the nucleotidyl cyclase activity of ExoY can contribute to P. aeruginosa acute pathogenicity.


Subject(s)
Bacterial Proteins/physiology , Glucosyltransferases/physiology , Pseudomonas Infections , Pseudomonas aeruginosa/pathogenicity , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Cytokines/blood , Disease Models, Animal , Female , Lung/immunology , Lung/pathology , Mice, Inbred C57BL , Nucleotides, Cyclic/metabolism , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/pathology , Uridine Monophosphate/metabolism
3.
Open Biol ; 8(1)2018 01.
Article in English | MEDLINE | ID: mdl-29386405

ABSTRACT

The nucleotidyl cyclase ExoY is an effector protein of the type III secretion system of Pseudomonas aeruginosa We compared the cyclic nucleotide production and lung disease phenotypes caused by the ExoY-overexpressing strain PA103ΔexoUexoT::Tc pUCPexoY, its vector control strain PA103ΔexoUexoT::Tc pUCP18, its loss-of-function control PA103ΔexoUexoT::Tc pUCPexoY K81M and natural ExoY-positive and ExoY-negative isolates in a murine acute airway infection model. Only the P. aeruginosa carrier of the exoY-plasmid produced high levels of cUMP and caused the most severe course of infection. The pathology ascribed to ExoY from studies using the high-copy-number plasmid on mammalian cells in vitro and in vivo was not observed with natural P. aeruginosa isolates. This indicates that the role of ExoY during infection with real-life P. aeruginosa still needs to be resolved.


Subject(s)
Bacterial Proteins/genetics , Gene Dosage , Glucosyltransferases/genetics , Phenotype , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Animals , Bacterial Proteins/metabolism , Female , Glucosyltransferases/metabolism , Lung/microbiology , Mice , Mice, Inbred C57BL , Pseudomonas aeruginosa/pathogenicity , Recombination, Genetic , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...