Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Nat Commun ; 15(1): 4021, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740751

ABSTRACT

The unexplained protective effect of childhood adiposity on breast cancer risk may be mediated via mammographic density (MD). Here, we investigate a complex relationship between adiposity in childhood and adulthood, puberty onset, MD phenotypes (dense area (DA), non-dense area (NDA), percent density (PD)), and their effects on breast cancer. We use Mendelian randomization (MR) and multivariable MR to estimate the total and direct effects of adiposity and age at menarche on MD phenotypes. Childhood adiposity has a decreasing effect on DA, while adulthood adiposity increases NDA. Later menarche increases DA/PD, but when accounting for childhood adiposity, this effect is attenuated. Next, we examine the effect of MD on breast cancer risk. DA/PD have a risk-increasing effect on breast cancer across all subtypes. The MD SNPs estimates are heterogeneous, and additional analyses suggest that different mechanisms may be linking MD and breast cancer. Finally, we evaluate the role of MD in the protective effect of childhood adiposity on breast cancer. Mediation MR analysis shows that 56% (95% CIs [32%-79%]) of this effect is mediated via DA. Our finding suggests that higher childhood adiposity decreases mammographic DA, subsequently reducing breast cancer risk. Understanding this mechanism is important for identifying potential intervention targets.


Subject(s)
Adiposity , Breast Density , Breast Neoplasms , Mammography , Menarche , Mendelian Randomization Analysis , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Female , Adiposity/genetics , Risk Factors , Child , Body Size , Adult , Polymorphism, Single Nucleotide , Middle Aged
2.
Am J Epidemiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38775277

ABSTRACT

BACKGROUND: Limited estimates exist on risk factors for epithelial ovarian cancer (EOC) in Asian, Hispanic, and Native Hawaiian/Pacific Islander (NHPI) women. METHODS: Participants included 1734 Asian (785 cases, 949 controls), 266 NHPI (99 cases, 167 controls), 1149 Hispanic (505 cases, 644 controls), and 24,189 White (9,981 cases, 14,208 controls) women from 11 studies in the Ovarian Cancer Association Consortium. Logistic regression models estimated odds ratios (ORs) and 95% confidence intervals (CIs) for risk associations by race and ethnicity. RESULTS: Heterogeneity in EOC risk associations by race and ethnicity (p ≤ 0.02) was observed for oral contraceptive (OC) use, parity, tubal ligation and smoking. We observed inverse associations with EOC risk for OC use and parity across all groups; associations were strongest in NHPI and Asian women. The inverse association for tubal ligation with risk was most pronounced for NHPI participants (OR=0.25, 95% CI 0.13-0.48), versus Asian and White participants, respectively (OR=0.68, 95% CI 0.51-0.90; OR=0.78, 95% CI 0.73-0.85). CONCLUSIONS: Differences in EOC risk factor associations were observed across racial and ethnic groups, which could in part be due to varying prevalence of EOC histotypes. Inclusion of greater diversity in future studies is essential to inform prevention strategies.

3.
JACC Cardiovasc Imaging ; 17(4): 411-424, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38300202

ABSTRACT

BACKGROUND: Imaging with late gadolinium enhancement (LGE) magnetic resonance (MR) and 18F-fluorodeoxyglucose (18F-FDG) PET allows complementary assessment of myocardial injury and disease activity and has shown promise for improved characterization of active cardiac sarcoidosis (CS) based on the combined positive imaging outcome, MR(+)PET(+). OBJECTIVES: This study aims to evaluate qualitative and quantitative assessments of hybrid MR/PET imaging in CS and to evaluate its association with cardiac-related outcomes. METHODS: A total of 148 patients with suspected CS underwent hybrid MR/PET imaging. Patients were classified based on the presence/absence of LGE (MR+/MR-), presence/absence of 18F-FDG (PET+/PET-), and pattern of 18F-FDG uptake (focal/diffuse) into the following categories: MR(+)PET(+)FOCAL, MR(+)PET(+)DIFFUSE, MR(+)PET(-), MR(-)PET(+)FOCAL, MR(-)PET(+)DIFFUSE, MR(-)PET(-). Further analysis classified MR positivity based on %LGE exceeding 5.7% as MR(+/-)5.7%. Quantitative values of standard uptake value, target-to-background ratio, target-to-normal-myocardium ratio (TNMRmax), and T2 were measured. The primary clinical endpoint was met by the occurrence of cardiac arrest, ventricular tachycardia, or secondary prevention implantable cardioverter-defibrillator (ICD) before the end of the study. The secondary endpoint was met by any of the primary endpoint criteria plus heart failure or heart block. MR/PET imaging results were compared between those meeting or not meeting the clinical endpoints. RESULTS: Patients designated MR(+)5.7%PET(+)FOCAL had increased odds of meeting the primary clinical endpoint compared to those with all other imaging classifications (unadjusted OR: 9.2 [95% CI: 3.0-28.7]; P = 0.0001), which was higher than the odds based on MR or PET alone. TNMRmax achieved an area under the receiver-operating characteristic curve of 0.90 for separating MR(+)PET(+)FOCAL from non-MR(+)PET(+)FOCAL, and 0.77 for separating those reaching the clinical endpoint from those not reaching the clinical endpoint. CONCLUSIONS: Hybrid MR/PET image-based classification of CS was statistically associated with clinical outcomes in CS. TNMRmax had modest sensitivity and specificity for quantifying the imaging-based classification MR(+)PET(+)FOCAL and was associated with outcomes. Use of combined MR and PET image-based classification may have use in prognostication and treatment management in CS.


Subject(s)
Cardiomyopathies , Myocarditis , Sarcoidosis , Humans , Fluorodeoxyglucose F18 , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/therapy , Cardiomyopathies/complications , Contrast Media , Radiopharmaceuticals , Predictive Value of Tests , Gadolinium , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Myocarditis/complications , Magnetic Resonance Spectroscopy , Sarcoidosis/diagnostic imaging , Sarcoidosis/therapy , Sarcoidosis/complications
4.
medRxiv ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37693539

ABSTRACT

Observational studies suggest that mammographic density (MD) may have a role in the unexplained protective effect of childhood adiposity on breast cancer risk. Here, we investigated a complex and interlinked relationship between puberty onset, adiposity, MD, and their effects on breast cancer using Mendelian randomization (MR). We estimated the effects of childhood and adulthood adiposity, and age at menarche on MD phenotypes (dense area (DA), non-dense area (NDA), percent density (PD)) using MR and multivariable MR (MVMR), allowing us to disentangle their total and direct effects. Next, we examined the effect of MD on breast cancer risk, including risk of molecular subtypes, and accounting for genetic pleiotropy. Finally, we used MVMR to evaluate whether the protective effect of childhood adiposity on breast cancer was mediated by MD. Childhood adiposity had a strong inverse effect on mammographic DA, while adulthood adiposity increased NDA. Later menarche had an effect of increasing DA and PD, but when accounting for childhood adiposity, this effect attenuated to the null. DA and PD had a risk-increasing effect on breast cancer across all subtypes. The MD single-nucleotide polymorphism (SNP) estimates were extremely heterogeneous, and examination of the SNPs suggested different mechanisms may be linking MD and breast cancer. Finally, MR mediation analysis estimated that 56% (95% CIs [32% - 79%]) of the childhood adiposity effect on breast cancer risk was mediated via DA. In this work, we sought to disentangle the relationship between factors affecting MD and breast cancer. We showed that higher childhood adiposity decreases mammographic DA, which subsequently leads to reduced breast cancer risk. Understanding this mechanism is of great importance for identifying potential targets of intervention, since advocating weight gain in childhood would not be recommended.

5.
Breast Cancer Res ; 25(1): 92, 2023 08 06.
Article in English | MEDLINE | ID: mdl-37544983

ABSTRACT

BACKGROUND: Breast density is strongly associated with breast cancer risk. Fully automated quantitative density assessment methods have recently been developed that could facilitate large-scale studies, although data on associations with long-term breast cancer risk are limited. We examined LIBRA assessments and breast cancer risk and compared results to prior assessments using Cumulus, an established computer-assisted method requiring manual thresholding. METHODS: We conducted a cohort study among 21,150 non-Hispanic white female participants of the Research Program in Genes, Environment and Health of Kaiser Permanente Northern California who were 40-74 years at enrollment, followed for up to 10 years, and had archived processed screening mammograms acquired on Hologic or General Electric full-field digital mammography (FFDM) machines and prior Cumulus density assessments available for analysis. Dense area (DA), non-dense area (NDA), and percent density (PD) were assessed using LIBRA software. Cox regression was used to estimate hazard ratios (HRs) for breast cancer associated with DA, NDA and PD modeled continuously in standard deviation (SD) increments, adjusting for age, mammogram year, body mass index, parity, first-degree family history of breast cancer, and menopausal hormone use. We also examined differences by machine type and breast view. RESULTS: The adjusted HRs for breast cancer associated with each SD increment of DA, NDA and PD were 1.36 (95% confidence interval, 1.18-1.57), 0.85 (0.77-0.93) and 1.44 (1.26-1.66) for LIBRA and 1.44 (1.33-1.55), 0.81 (0.74-0.89) and 1.54 (1.34-1.77) for Cumulus, respectively. LIBRA results were generally similar by machine type and breast view, although associations were strongest for Hologic machines and mediolateral oblique views. Results were also similar during the first 2 years, 2-5 years and 5-10 years after the baseline mammogram. CONCLUSION: Associations with breast cancer risk were generally similar for LIBRA and Cumulus density measures and were sustained for up to 10 years. These findings support the suitability of fully automated LIBRA assessments on processed FFDM images for large-scale research on breast density and cancer risk.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Density , Cohort Studies , White , Breast/diagnostic imaging , Mammography/methods , Risk Factors , Case-Control Studies
6.
Can J Surg ; 66(3): E310-E320, 2023.
Article in English | MEDLINE | ID: mdl-37369443

ABSTRACT

BACKGROUND: Women with low-grade ovarian serous carcinoma (LGSC) benefit from surgical treatment; however, the role of chemotherapy is controversial. We examined an international database through the Ovarian Cancer Association Consortium to identify factors that affect survival in LGSC. METHODS: We performed a retrospective cohort analysis of patients with LGSC who had had primary surgery and had overall survival data available. We performed univariate and multivariate analyses of progression-free survival and overall survival, and generated Kaplan-Meier survival curves. RESULTS: Of the 707 patients with LGSC, 680 (96.2%) had available overall survival data. The patients' median age overall was 54 years. Of the 659 patients with International Federation of Obstetrics and Gynecology stage data, 156 (23.7%) had stage I disease, 64 (9.7%) had stage II, 395 (59.9%) had stage III, and 44 (6.7%) had stage IV. Of the 377 patients with surgical data, 200 (53.0%) had no visible residual disease. Of the 361 patients with chemotherapy data, 330 (91.4%) received first-line platinum-based chemotherapy. The median follow-up duration was 5.0 years. The median progression-free survival and overall survival were 43.2 months and 110.4 months, respectively. Multivariate analysis indicated a statistically significant impact of stage and residual disease on progression-free survival and overall survival. Platinum-based chemotherapy was not associated with a survival advantage. CONCLUSION: This multicentre analysis indicates that complete surgical cytoreduction to no visible residual disease has the most impact on improved survival in LGSC. This finding could immediately inform and change practice.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Middle Aged , Retrospective Studies , Neoplasm Staging , Ovarian Neoplasms/surgery , Ovarian Neoplasms/drug therapy , Cystadenocarcinoma, Serous/surgery , Cystadenocarcinoma, Serous/drug therapy , Kaplan-Meier Estimate
7.
Nat Commun ; 14(1): 377, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36690614

ABSTRACT

Human bulk tissue samples comprise multiple cell types with diverse roles in disease etiology. Conventional transcriptome-wide association study approaches predict genetically regulated gene expression at the tissue level, without considering cell-type heterogeneity, and test associations of predicted tissue-level expression with disease. Here we develop MiXcan, a cell-type-aware transcriptome-wide association study approach that predicts cell-type-level expression, identifies disease-associated genes via combination of cell-type-level association signals for multiple cell types, and provides insight into the disease-critical cell type. As a proof of concept, we conducted cell-type-aware analyses of breast cancer in 58,648 women and identified 12 transcriptome-wide significant genes using MiXcan compared with only eight genes using conventional approaches. Importantly, MiXcan identified genes with distinct associations in mammary epithelial versus stromal cells, including three new breast cancer susceptibility genes. These findings demonstrate that cell-type-aware transcriptome-wide analyses can reveal new insights into the genetic and cellular etiology of breast cancer and other diseases.


Subject(s)
Breast Neoplasms , Transcriptome , Female , Humans , Breast Neoplasms/genetics , Gene Expression Profiling , Breast/metabolism , Genome-Wide Association Study , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
8.
J Natl Cancer Inst ; 115(5): 539-551, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36688720

ABSTRACT

BACKGROUND: The role of ovulation in epithelial ovarian cancer (EOC) is supported by the consistent protective effects of parity and oral contraceptive use. Whether these factors protect through anovulation alone remains unclear. We explored the association between lifetime ovulatory years (LOY) and EOC. METHODS: LOY was calculated using 12 algorithms. Odds ratios (ORs) and 95% confidence intervals (CIs) estimated the association between LOY or LOY components and EOC among 26 204 control participants and 21 267 case patients from 25 studies. To assess whether LOY components act through ovulation suppression alone, we compared beta coefficients obtained from regression models with expected estimates assuming 1 year of ovulation suppression has the same effect regardless of source. RESULTS: LOY was associated with increased EOC risk (OR per year increase = 1.014, 95% CI = 1.009 to 1.020 to OR per year increase = 1.044, 95% CI = 1.041 to 1.048). Individual LOY components, except age at menarche, also associated with EOC. The estimated model coefficient for oral contraceptive use and pregnancies were 4.45 times and 12- to 15-fold greater than expected, respectively. LOY was associated with high-grade serous, low-grade serous, endometrioid, and clear cell histotypes (ORs per year increase = 1.054, 1.040, 1.065, and 1.098, respectively) but not mucinous tumors. Estimated coefficients of LOY components were close to expected estimates for high-grade serous but larger than expected for low-grade serous, endometrioid, and clear cell histotypes. CONCLUSIONS: LOY is positively associated with nonmucinous EOC. Differences between estimated and expected model coefficients for LOY components suggest factors beyond ovulation underlie the associations between LOY components and EOC in general and for non-HGSOC.


Subject(s)
Ovarian Neoplasms , Pregnancy , Humans , Female , Carcinoma, Ovarian Epithelial/epidemiology , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/etiology , Ovarian Neoplasms/pathology , Risk Factors , Parity , Contraceptives, Oral/adverse effects , Case-Control Studies
9.
Breast Cancer Res ; 24(1): 27, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414113

ABSTRACT

BACKGROUND: Mammographic density (MD) phenotypes, including percent density (PMD), area of dense tissue (DA), and area of non-dense tissue (NDA), are associated with breast cancer risk. Twin studies suggest that MD phenotypes are highly heritable. However, only a small proportion of their variance is explained by identified genetic variants. METHODS: We conducted a genome-wide association study, as well as a transcriptome-wide association study (TWAS), of age- and BMI-adjusted DA, NDA, and PMD in up to 27,900 European-ancestry women from the MODE/BCAC consortia. RESULTS: We identified 28 genome-wide significant loci for MD phenotypes, including nine novel signals (5q11.2, 5q14.1, 5q31.1, 5q33.3, 5q35.1, 7p11.2, 8q24.13, 12p11.2, 16q12.2). Further, 45% of all known breast cancer SNPs were associated with at least one MD phenotype at p < 0.05. TWAS further identified two novel genes (SHOX2 and CRISPLD2) whose genetically predicted expression was significantly associated with MD phenotypes. CONCLUSIONS: Our findings provided novel insight into the genetic background of MD phenotypes, and further demonstrated their shared genetic basis with breast cancer.


Subject(s)
Breast Density , Breast Neoplasms , Breast Density/genetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide , Transcriptome
10.
Cancer Cell ; 39(4): 509-528.e20, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33577785

ABSTRACT

Glioblastoma (GBM) is the most aggressive nervous system cancer. Understanding its molecular pathogenesis is crucial to improving diagnosis and treatment. Integrated analysis of genomic, proteomic, post-translational modification and metabolomic data on 99 treatment-naive GBMs provides insights to GBM biology. We identify key phosphorylation events (e.g., phosphorylated PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct immune cell types are discovered using bulk omics methodologies, validated by snRNA-seq, and correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in classical-like and immune-low GBM is driven largely by BRDs, CREBBP, and EP300. Integrated metabolomic and proteomic data identify specific lipid distributions across subtypes and distinct global metabolic changes in IDH-mutated tumors. This work highlights biological relationships that could contribute to stratification of GBM patients for more effective treatment.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proteogenomics , Brain Neoplasms/pathology , Computational Biology/methods , Glioblastoma/pathology , Humans , Metabolomics/methods , Mutation/genetics , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Phosphorylation/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proteogenomics/methods , Proteomics/methods
11.
J Natl Cancer Inst ; 113(3): 301-308, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32766851

ABSTRACT

BACKGROUND: Parity is associated with decreased risk of invasive ovarian cancer; however, the relationship between incomplete pregnancies and invasive ovarian cancer risk is unclear. This relationship was examined using 15 case-control studies from the Ovarian Cancer Association Consortium (OCAC). Histotype-specific associations, which have not been examined previously with large sample sizes, were also evaluated. METHODS: A pooled analysis of 10 470 invasive epithelial ovarian cancer cases and 16 942 controls was conducted. Odds ratios (ORs) and 95% confidence intervals (CIs) for the association between incomplete pregnancies and invasive epithelial ovarian cancer were estimated using logistic regression. All models were conditioned on OCAC study, race and ethnicity, age, and education level and adjusted for number of complete pregnancies, oral contraceptive use, and history of breastfeeding. The same approach was used for histotype-specific analyses. RESULTS: Ever having an incomplete pregnancy was associated with a 16% reduction in ovarian cancer risk (OR = 0.84, 95% CI = 0.79 to 0.89). There was a trend of decreasing risk with increasing number of incomplete pregnancies (2-sided Ptrend < .001). An inverse association was observed for all major histotypes; it was strongest for clear cell ovarian cancer. CONCLUSIONS: Incomplete pregnancies are associated with a reduced risk of invasive epithelial ovarian cancer. Pregnancy, including incomplete pregnancy, was associated with a greater reduction in risk of clear cell ovarian cancer, but the result was broadly consistent across histotypes. Future work should focus on understanding the mechanisms underlying this reduced risk.


Subject(s)
Abortion, Induced/statistics & numerical data , Abortion, Spontaneous/epidemiology , Carcinoma, Ovarian Epithelial/epidemiology , Ovarian Neoplasms/epidemiology , Case-Control Studies , Female , Humans , Parity , Pregnancy , Risk , United Kingdom/epidemiology , United States/epidemiology
12.
Nat Commun ; 11(1): 5116, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33037222

ABSTRACT

Mammographic density (MD) phenotypes are strongly associated with breast cancer risk and highly heritable. In this GWAS meta-analysis of 24,192 women, we identify 31 MD loci at P < 5 × 10-8, tripling the number known to 46. Seventeen identified MD loci also are associated with breast cancer risk in an independent meta-analysis (P < 0.05). Mendelian randomization analyses show that genetic estimates of dense area (DA), nondense area (NDA), and percent density (PD) are all significantly associated with breast cancer risk (P < 0.05). Pathway analyses reveal distinct biological processes involving DA, NDA and PD loci. These findings provide additional insights into the genetic basis of MD phenotypes and their associations with breast cancer risk.


Subject(s)
Breast Density , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Adult , Aged , Aged, 80 and over , Female , Genome-Wide Association Study , Humans , Mammography , Mendelian Randomization Analysis , Middle Aged , Polymorphism, Single Nucleotide
13.
Br J Cancer ; 123(5): 793-802, 2020 09.
Article in English | MEDLINE | ID: mdl-32555365

ABSTRACT

BACKGROUND: PTEN loss is a putative driver in histotypes of ovarian cancer (high-grade serous (HGSOC), endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous (LGSOC)). We aimed to characterise PTEN expression as a biomarker in epithelial ovarian cancer in a large population-based study. METHODS: Tumours from 5400 patients from a multicentre observational, prospective cohort study of the Ovarian Tumour Tissue Analysis Consortium were used to evaluate associations between immunohistochemical PTEN patterns and overall survival time, age, stage, grade, residual tumour, CD8+ tumour-infiltrating lymphocytes (TIL) counts, expression of oestrogen receptor (ER), progesterone receptor (PR) and androgen receptor (AR) by means of Cox proportional hazard models and generalised Cochran-Mantel-Haenszel tests. RESULTS: Downregulation of cytoplasmic PTEN expression was most frequent in ENOC (most frequently in younger patients; p value = 0.0001) and CCOC and was associated with longer overall survival in HGSOC (hazard ratio: 0.78, 95% CI: 0.65-0.94, p value = 0.022). PTEN expression was associated with ER, PR and AR expression (p values: 0.0008, 0.062 and 0.0002, respectively) in HGSOC and with lower CD8 counts in CCOC (p value < 0.0001). Heterogeneous expression of PTEN was more prevalent in advanced HGSOC (p value = 0.019) and associated with higher CD8 counts (p value = 0.0016). CONCLUSIONS: PTEN loss is a frequent driver in ovarian carcinoma associating distinctly with expression of hormonal receptors and CD8+ TIL counts in HGSOC and CCOC histotypes.


Subject(s)
PTEN Phosphohydrolase/biosynthesis , Adenocarcinoma, Clear Cell/enzymology , Adenocarcinoma, Clear Cell/mortality , Adenocarcinoma, Clear Cell/pathology , Age Factors , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Carcinoma, Ovarian Epithelial/enzymology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/mortality , Carcinoma, Ovarian Epithelial/pathology , Cohort Studies , Down-Regulation , Female , Gene Knockout Techniques , Humans , Middle Aged , Neoplasm Staging , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Prospective Studies , Receptors, Androgen/biosynthesis , Receptors, Estrogen/biosynthesis , Receptors, Progesterone/biosynthesis , Tissue Array Analysis , Tumor Suppressor Proteins/biosynthesis , Tumor Suppressor Proteins/deficiency
14.
JAMA Netw Open ; 3(3): e200265, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32119094

ABSTRACT

Importance: Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. Objective: To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. Design, Setting, and Participants: In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. Main Outcomes and Measurements: Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists' specificity with radiologists' sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists' recall assessment was developed and evaluated. Results: Overall, 144 231 screening mammograms from 85 580 US women (952 cancer positive ≤12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166 578 examinations from 68 008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists' sensitivity, lower than community-practice radiologists' specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. Conclusions and Relevance: While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation.


Subject(s)
Breast Neoplasms/diagnostic imaging , Deep Learning , Image Interpretation, Computer-Assisted/methods , Mammography/methods , Radiologists , Adult , Aged , Algorithms , Artificial Intelligence , Early Detection of Cancer , Female , Humans , Middle Aged , Radiology , Sensitivity and Specificity , Sweden , United States
15.
Cancer Epidemiol Biomarkers Prev ; 29(5): 1039-1048, 2020 05.
Article in English | MEDLINE | ID: mdl-32066618

ABSTRACT

BACKGROUND: Percent density (PD) is a strong risk factor for breast cancer that is potentially modifiable by lifestyle factors. PD is a composite of the dense (DA) and nondense (NDA) areas of a mammogram, representing predominantly fibroglandular or fatty tissues, respectively. Alcohol and tobacco use have been associated with increased breast cancer risk. However, their effects on mammographic density (MD) phenotypes are poorly understood. METHODS: We examined associations of alcohol and tobacco use with PD, DA, and NDA in a population-based cohort of 23,456 women screened using full-field digital mammography machines manufactured by Hologic or General Electric. MD was measured using Cumulus. Machine-specific effects were estimated using linear regression, and combined using random effects meta-analysis. RESULTS: Alcohol use was positively associated with PD (P trend = 0.01), unassociated with DA (P trend = 0.23), and inversely associated with NDA (P trend = 0.02) adjusting for age, body mass index, reproductive factors, physical activity, and family history of breast cancer. In contrast, tobacco use was inversely associated with PD (P trend = 0.0008), unassociated with DA (P trend = 0.93), and positively associated with NDA (P trend<0.0001). These trends were stronger in normal and overweight women than in obese women. CONCLUSIONS: These findings suggest that associations of alcohol and tobacco use with PD result more from their associations with NDA than DA. IMPACT: PD and NDA may mediate the association of alcohol drinking, but not tobacco smoking, with increased breast cancer risk. Further studies are needed to elucidate the modifiable lifestyle factors that influence breast tissue composition, and the important role of the fatty tissues on breast health.


Subject(s)
Alcohol Drinking/epidemiology , Breast Density , Breast Neoplasms/epidemiology , Mammography/statistics & numerical data , Tobacco Smoking/epidemiology , Adult , Aged , Aged, 80 and over , Alcohol Drinking/adverse effects , Breast/diagnostic imaging , Breast/physiopathology , Breast Neoplasms/diagnosis , Breast Neoplasms/physiopathology , Breast Neoplasms/prevention & control , Cohort Studies , Female , Humans , Middle Aged , Risk Assessment/statistics & numerical data , Risk Factors , Tobacco Smoking/adverse effects
16.
Sci Rep ; 9(1): 12495, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467326

ABSTRACT

The rapid development of deep learning, a family of machine learning techniques, has spurred much interest in its application to medical imaging problems. Here, we develop a deep learning algorithm that can accurately detect breast cancer on screening mammograms using an "end-to-end" training approach that efficiently leverages training datasets with either complete clinical annotation or only the cancer status (label) of the whole image. In this approach, lesion annotations are required only in the initial training stage, and subsequent stages require only image-level labels, eliminating the reliance on rarely available lesion annotations. Our all convolutional network method for classifying screening mammograms attained excellent performance in comparison with previous methods. On an independent test set of digitized film mammograms from the Digital Database for Screening Mammography (CBIS-DDSM), the best single model achieved a per-image AUC of 0.88, and four-model averaging improved the AUC to 0.91 (sensitivity: 86.1%, specificity: 80.1%). On an independent test set of full-field digital mammography (FFDM) images from the INbreast database, the best single model achieved a per-image AUC of 0.95, and four-model averaging improved the AUC to 0.98 (sensitivity: 86.7%, specificity: 96.1%). We also demonstrate that a whole image classifier trained using our end-to-end approach on the CBIS-DDSM digitized film mammograms can be transferred to INbreast FFDM images using only a subset of the INbreast data for fine-tuning and without further reliance on the availability of lesion annotations. These findings show that automatic deep learning methods can be readily trained to attain high accuracy on heterogeneous mammography platforms, and hold tremendous promise for improving clinical tools to reduce false positive and false negative screening mammography results. Code and model available at: https://github.com/lishen/end2end-all-conv .


Subject(s)
Breast Neoplasms/diagnostic imaging , Deep Learning , Mammography , Algorithms , Breast Neoplasms/diagnosis , Databases, Factual , Diagnosis, Computer-Assisted , Early Detection of Cancer , Female , Humans
17.
Cancer Med ; 8(5): 2503-2513, 2019 05.
Article in English | MEDLINE | ID: mdl-31001917

ABSTRACT

An association between genetic variants in the vitamin D receptor (VDR) gene and epithelial ovarian cancer (EOC) was previously reported in women of African ancestry (AA). We sought to examine associations between genetic variants in VDR and additional genes from vitamin D biosynthesis and pathway targets (EGFR, UGT1A, UGT2A1/2, UGT2B, CYP3A4/5, CYP2R1, CYP27B1, CYP24A1, CYP11A1, and GC). Genotyping was performed using the custom-designed 533,631 SNP Illumina OncoArray with imputation to the 1,000 Genomes Phase 3 v5 reference set in 755 EOC cases, including 537 high-grade serous (HGSOC), and 1,235 controls. All subjects are of African ancestry (AA). Logistic regression was performed to estimate odds ratios (OR) and 95% confidence intervals (CI). We further evaluated statistical significance of selected SNPs using the Bayesian False Discovery Probability (BFDP). A significant association with EOC was identified in the UGT2A1/2 region for the SNP rs10017134 (per allele OR = 1.4, 95% CI = 1.2-1.7, P = 1.2 × 10-6 , BFDP = 0.02); and an association with HGSOC was identified in the EGFR region for the SNP rs114972508 (per allele OR = 2.3, 95% CI = 1.6-3.4, P = 1.6 × 10-5 , BFDP = 0.29) and in the UGT2A1/2 region again for rs1017134 (per allele OR = 1.4, 95% CI = 1.2-1.7, P = 2.3 × 10-5 , BFDP = 0.23). Genetic variants in the EGFR and UGT2A1/2 may increase susceptibility of EOC in AA women. Future studies to validate these findings are warranted. Alterations in EGFR and UGT2A1/2 could perturb enzyme efficacy, proliferation in ovaries, impact and mark susceptibility to EOC.


Subject(s)
Black or African American/genetics , Carcinoma, Ovarian Epithelial/genetics , Glucuronosyltransferase/genetics , Ovarian Neoplasms/genetics , Receptors, Calcitriol/genetics , Bayes Theorem , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , ErbB Receptors/genetics , Female , Genetic Association Studies , Humans , Logistic Models , Middle Aged , Neoplasm Grading , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Polymorphism, Single Nucleotide , Vitamin D/biosynthesis
18.
Am J Epidemiol ; 188(6): 1144-1154, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30865217

ABSTRACT

Breast density is a modifiable factor that is strongly associated with breast cancer risk. We sought to understand the influence of newer technologies of full-field digital mammography (FFDM) on breast density research and to determine whether results are comparable across studies using FFDM and previous studies using traditional film-screen mammography. We studied 24,840 screening-age (40-74 years) non-Hispanic white women who were participants in the Research Program on Genes, Environment and Health of Kaiser Permanente Northern California and underwent screening mammography with either Hologic (Hologic, Inc., Marlborough, Massachusetts) or General Electric (General Electric Company, Boston, Massachusetts) FFDM machines between 2003 and 2013. We estimated the associations of parity, age at first birth, age at menarche, and menopausal status with percent density and dense area as measured by a single radiological technologist using Cumulus software (Canto Software, Inc., San Francisco, California). We found that associations between reproductive factors and mammographic density measured using processed FFDM images were generally similar in magnitude and direction to those from prior studies using film mammography. Estimated associations for both types of FFDM machines were in the same direction. There was some evidence of heterogeneity in the magnitude of the effect sizes by machine type, which we accounted for using random-effects meta-analysis when combining results. Our findings demonstrate the robustness of quantitative mammographic density measurements across FFDM and film mammography platforms.


Subject(s)
Breast Density/physiology , Breast Neoplasms/epidemiology , Mammography/methods , Reproductive History , Adult , Aged , Breast Neoplasms/diagnostic imaging , Female , Humans , Menarche/physiology , Menopause/physiology , Middle Aged , Parity , White People
19.
Mayo Clin Proc ; 93(3): 307-320, 2018 03.
Article in English | MEDLINE | ID: mdl-29502561

ABSTRACT

OBJECTIVE: To evaluate myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 (TLR4) expression in relation to clinical features of epithelial ovarian cancer, histologic subtypes, and overall survival. PATIENTS AND METHODS: We conducted centralized immunohistochemical staining, semi-quantitative scoring, and survival analysis in 5263 patients participating in the Ovarian Tumor Tissue Analysis consortium. Patients were diagnosed between January 1, 1978, and December 31, 2014, including 2865 high-grade serous ovarian carcinomas (HGSOCs), with more than 12,000 person-years of follow-up time. Tissue microarrays were stained for MyD88 and TLR4, and staining intensity was classified using a 2-tiered system for each marker (weak vs strong). RESULTS: Expression of MyD88 and TLR4 was similar in all histotypes except clear cell ovarian cancer, which showed reduced expression compared with other histotypes (P<.001 for both). In HGSOC, strong MyD88 expression was modestly associated with shortened overall survival (hazard ratio [HR], 1.13; 95% CI, 1.01-1.26; P=.04) but was also associated with advanced stage (P<.001). The expression of TLR4 was not associated with survival. In low-grade serous ovarian cancer (LGSOC), strong expression of both MyD88 and TLR4 was associated with favorable survival (HR [95% CI], 0.49 [0.29-0.84] and 0.44 [0.21-0.89], respectively; P=.009 and P=.02, respectively). CONCLUSION: Results are consistent with an association between strong MyD88 staining and advanced stage and poorer survival in HGSOC and demonstrate correlation between strong MyD88 and TLR4 staining and improved survival in LGSOC, highlighting the biological differences between the 2 serous histotypes.


Subject(s)
Carcinoma, Ovarian Epithelial/metabolism , Myeloid Differentiation Factor 88/metabolism , Ovarian Neoplasms/metabolism , Toll-Like Receptor 4/metabolism , Adult , Aged , Biomarkers, Tumor/metabolism , Carcinoma, Ovarian Epithelial/mortality , Female , Humans , Immunohistochemistry/methods , Middle Aged , Ovarian Neoplasms/mortality , Survival Analysis , Tissue Array Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...