Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Eur J Med Res ; 28(1): 303, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644600

ABSTRACT

BACKGROUND: We sought to determine the extent to which cortisol suppressed innate and T cell-mediated cytokine production and whether it could be involved in reducing peripheral cytokine production following subarachnoid haemorrhage (SAH). METHODS: Whole blood from healthy controls, patients with SAH and healthy volunteers was stimulated with lipopolysaccharide (LPS), to stimulate innate immunity, or phytohaemagglutinin (PHA), to stimulate T cell-mediated immunity. Varying concentrations of cortisol were included, with or without the cortisol antagonist RU486. Concentration of interleukin-6 (IL-6), IL-1ß and tumour necrosis factor-alpha) TNFα were determined as a measure of innate immunity. IL-6, IL-17 (interferon gamma) IFNƔ and IL-17 were determined as an indicator of T cell-mediated immunity. RESULTS: Suppression of innate responses to LPS was apparent in whole blood from SAH patients, relative to healthy controls, and TNFα production was inversely correlated with plasma cortisol concentration. Cytokine production in whole blood from healthy volunteers was inhibited by cortisol concentrations from 0.33 µM, or 1 µM and above, and these responses were effectively reversed by the cortisol antagonist RU-486. In SAH patients, RU-486 reversed suppression of innate TNF-α and IL-6 responses, but not IL-1ß or T cell-mediated responses. CONCLUSION: These data suggest that cortisol may play a role in reducing innate, but not T cell-mediated immune responses in patients with injuries such as SAH and that cortisol antagonists could be effective in boosting early innate responses.


Subject(s)
Hydrocortisone , Subarachnoid Hemorrhage , Humans , Interleukin-17 , Interleukin-6 , Lipopolysaccharides/pharmacology , Mifepristone , Tumor Necrosis Factor-alpha , Immunosuppression Therapy , Interferon-gamma
2.
Brain Behav Immun ; 76: 126-138, 2019 02.
Article in English | MEDLINE | ID: mdl-30453020

ABSTRACT

The cytokine interleukin-1 (IL-1) is a key contributor to neuroinflammation and brain injury, yet mechanisms by which IL-1 triggers neuronal injury remain unknown. Here we induced conditional deletion of IL-1R1 in brain endothelial cells, neurons and blood cells to assess site-specific IL-1 actions in a model of cerebral ischaemia in mice. Tamoxifen treatment of IL-1R1 floxed (fl/fl) mice crossed with mice expressing tamoxifen-inducible Cre-recombinase under the Slco1c1 promoter resulted in brain endothelium-specific deletion of IL-1R1 and a significant decrease in infarct size (29%), blood-brain barrier (BBB) breakdown (53%) and neurological deficit (40%) compared to vehicle-treated or control (IL-1R1fl/fl) mice. Absence of brain endothelial IL-1 signalling improved cerebral blood flow, followed by reduced neutrophil infiltration and vascular activation 24 h after brain injury. Conditional IL-1R1 deletion in neurons using tamoxifen inducible nestin-Cre mice resulted in reduced neuronal injury (25%) and altered microglia-neuron interactions, without affecting cerebral perfusion or vascular activation. Deletion of IL-1R1 specifically in cholinergic neurons reduced infarct size, brain oedema and improved functional outcome. Ubiquitous deletion of IL-1R1 had no effect on brain injury, suggesting beneficial compensatory mechanisms on other cells against the detrimental effects of IL-1 on endothelial cells and neurons. We also show that IL-1R1 signalling deletion in platelets or myeloid cells does not contribute to brain injury after experimental stroke. Thus, brain endothelial and neuronal (cholinergic) IL-1R1 mediate detrimental actions of IL-1 in the brain in ischaemic stroke. Cell-specific targeting of IL-1R1 in the brain could therefore have therapeutic benefits in stroke and other cerebrovascular diseases.


Subject(s)
Brain Ischemia/immunology , Interleukin-1/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain Injuries/metabolism , Brain Ischemia/metabolism , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Cytokines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/physiology , Inflammation/metabolism , Interleukin-1/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1 Type I/metabolism , Signal Transduction
3.
ACS Nano ; 12(12): 11949-11962, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30444603

ABSTRACT

Graphene oxide (GO), an oxidized form of graphene, has potential applications in biomedical research. However, how GO interacts with biological systems, including the innate immune system, is poorly understood. Here, we elucidate the effects of GO sheets on macrophages, identifying distinctive effects of GO on the inflammatory phenotype. Small, thin (s)-GO dose-dependently inhibited release of interleukin (IL)-1ß and IL-6 but not tumor necrosis factor α. NLRP3 inflammasome and caspase-1 activation was not affected. The effect of s-GO was pretranslational, as s-GO blocked Toll-like receptor 4-dependent expression of Il1b and Il6 but not Nlrp3 or Tnf mRNA transcripts. s-GO was internalized by immortalized bone-marrow-derived macrophages, suggesting a potential intracellular action. Uptake of polystyrene beads with similar lateral dimensions and surface charge did not phenocopy the effects of s-GO, suggesting that s-GO-mediated inhibition of interleukin expression was not simply due to particle phagocytosis. RNA-Seq analysis established that s-GO had profound effects on the immunometabolism of the cells, leading to activation of the transcription factor nuclear factor erythroid 2-related factor 2, which inhibited expression of cytokines such as IL-1ß and IL-6. Thus, we have identified immunometabolic effects of GO that reveal another dimension to its effects on cells. These findings suggest that s-GO may be used as a valuable tool to generate further insights into inflammatory mechanisms and indicate its potential applications in biomedicine.


Subject(s)
Cytokines/metabolism , Graphite/chemistry , NF-E2-Related Factor 2/metabolism , Animals , Cell Survival/drug effects , Cells, Cultured , Inflammasomes/immunology , Inflammasomes/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Neuroglia/metabolism , RNA, Messenger/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Stroke ; 49(5): 1210-1216, 2018 05.
Article in English | MEDLINE | ID: mdl-29567761

ABSTRACT

BACKGROUND AND PURPOSE: The proinflammatory cytokine IL-1 (interleukin-1) has a deleterious role in cerebral ischemia, which is attenuated by IL-1 receptor antagonist (IL-1Ra). IL-1 induces peripheral inflammatory mediators, such as interleukin-6, which are associated with worse prognosis after ischemic stroke. We investigated whether subcutaneous IL-1Ra reduces the peripheral inflammatory response in acute ischemic stroke. METHODS: SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke) was a single-center, double-blind, randomized, placebo-controlled phase 2 trial of subcutaneous IL-1Ra (100 mg administered twice daily for 3 days) in patients presenting within 5 hours of ischemic stroke onset. Randomization was stratified for baseline National Institutes of Health Stroke Scale score and thrombolysis. Measurement of plasma interleukin-6 and other peripheral inflammatory markers was undertaken at 5 time points. The primary outcome was difference in concentration of log(interleukin-6) as area under the curve to day 3. Secondary outcomes included exploratory effect of IL-1Ra on 3-month outcome with the modified Rankin Scale. RESULTS: We recruited 80 patients (mean age, 72 years; median National Institutes of Health Stroke Scale, 12) of whom 73% received intravenous thrombolysis with alteplase. IL-1Ra significantly reduced plasma interleukin-6 (P<0.001) and plasma C-reactive protein (P<0.001). IL-1Ra was well tolerated with no safety concerns. Allocation to IL-1Ra was not associated with a favorable outcome on modified Rankin Scale: odds ratio (95% confidence interval)=0.67 (0.29-1.52), P=0.34. Exploratory mediation analysis suggested that IL-1Ra improved clinical outcome by reducing inflammation, but there was a statistically significant, alternative mechanism countering this benefit. CONCLUSIONS: IL-1Ra reduced plasma inflammatory markers which are known to be associated with worse clinical outcome in ischemic stroke. Subcutaneous IL-1Ra is safe and well tolerated. Further experimental studies are required to investigate efficacy and possible interactions of IL-1Ra with thrombolysis. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: ISRCTN74236229.


Subject(s)
Brain Ischemia/drug therapy , Fibrinolytic Agents/therapeutic use , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Stroke/drug therapy , Tissue Plasminogen Activator/therapeutic use , Aged , Aged, 80 and over , Area Under Curve , Brain Ischemia/immunology , C-Reactive Protein/immunology , Double-Blind Method , Female , Humans , Inflammation , Injections, Subcutaneous , Interleukin-6/immunology , Male , Middle Aged , Odds Ratio , Stroke/immunology , Thrombolytic Therapy , Treatment Outcome
5.
J Neurosurg ; 128(2): 515-523, 2018 02.
Article in English | MEDLINE | ID: mdl-28298024

ABSTRACT

OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating cerebrovascular event with long-term morbidity and mortality. Patients who survive the initial bleeding are likely to suffer further early brain injury arising from a plethora of pathological processes. These may result in a worsening of outcome or death in approximately 25% of patients and may contribute to longer-term cognitive dysfunction in survivors. Inflammation, mediated by the cytokine interleukin-1 (IL-1), is an important contributor to cerebral ischemia after diverse forms of brain injury, including aSAH. Its effects are attenuated by its naturally occurring antagonist, IL-1 receptor antagonist (IL-1Ra [anakinra]). The authors hypothesized that administration of additional subcutaneous IL-1Ra would reduce inflammation and associated plasma markers associated with poor outcome following aSAH. METHODS This was a randomized, open-label, single-blinded study of 100 mg subcutaneous IL-1Ra, administered twice daily in patients with aSAH, starting within 3 days of ictus and continuing until 21 days postictus or discharge from the neurosurgical center, whichever was earlier. Blood samples were taken at admission (baseline) and at Days 3-8, 14, and 21 postictus for measurement of inflammatory markers. The primary outcome was difference in plasma IL-6 measured as area under the curve between Days 3 and 8, corrected for baseline value. Secondary outcome measures included similar area under the curve analyses for other inflammatory markers, plasma pharmacokinetics for IL-1Ra, and clinical outcome at 6 months. RESULTS Interleukin-1Ra significantly reduced levels of IL-6 and C-reactive protein (p < 0.001). Fibrinogen levels were also reduced in the active arm of the study (p < 0.002). Subcutaneous IL-1Ra was safe, well tolerated, and had a predictable plasma pharmacokinetic profile. Although the study was not powered to investigate clinical effect, scores of the Glasgow Outcome Scale-extended at 6 months were better in the active group; however, this outcome did not reach statistical significance. CONCLUSIONS Subcutaneous IL-1Ra is safe and well tolerated in aSAH. It is effective in reducing peripheral inflammation. These data support a Phase III study investigating the effect of IL-1Ra on outcome following aSAH. Clinical trial registration no.: EudraCT: 2011-001855-35 ( www.clinicaltrialsregister.eu ).


Subject(s)
Inflammation/drug therapy , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Receptors, Interleukin-1/antagonists & inhibitors , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/pathology , Adult , Aged , Biomarkers , C-Reactive Protein/analysis , Female , Fibrinogen/analysis , Glasgow Outcome Scale , Humans , Inflammation/etiology , Injections, Subcutaneous , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin 1 Receptor Antagonist Protein/pharmacokinetics , Male , Middle Aged , Single-Blind Method , Subarachnoid Hemorrhage/complications , Treatment Outcome , Young Adult
6.
Cell Chem Biol ; 24(11): 1321-1335.e5, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28943355

ABSTRACT

NLRP3 is a receptor important for host responses to infection, yet is also known to contribute to devastating diseases such as Alzheimer's disease, diabetes, atherosclerosis, and others, making inhibitors for NLRP3 sought after. One of the inhibitors currently in use is 2-aminoethoxy diphenylborinate (2APB). Unfortunately, in addition to inhibiting NLRP3, 2APB also displays non-selective effects on cellular Ca2+ homeostasis. Here, we use 2APB as a chemical scaffold to build a series of inhibitors, the NBC series, which inhibit the NLRP3 inflammasome in vitro and in vivo without affecting Ca2+ homeostasis. The core chemical insight of this work is that the oxazaborine ring is a critical feature of the NBC series, and the main biological insight the use of NBC inhibitors led to was that NLRP3 inflammasome activation was independent of Ca2+. The NBC compounds represent useful tools to dissect NLRP3 function, and may lead to oxazaborine ring-containing therapeutics.


Subject(s)
Boron/chemistry , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Animals , Bone Marrow Cells/cytology , Boron/pharmacology , Boron Compounds/chemistry , Boron Compounds/metabolism , Boron Compounds/pharmacology , Calcium/metabolism , Cells, Cultured , Crystallography, X-Ray , Humans , Inhibitory Concentration 50 , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Conformation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Structure-Activity Relationship
7.
Stem Cell Res Ther ; 8(1): 79, 2017 04 17.
Article in English | MEDLINE | ID: mdl-28412968

ABSTRACT

BACKGROUND: Inflammation is a key contributor to central nervous system (CNS) injury such as stroke, and is a major target for therapeutic intervention. Effective treatments for CNS injuries are limited and applicable to only a minority of patients. Stem cell-based therapies are increasingly considered for the treatment of CNS disease, because they can be used as in-situ regulators of inflammation, and improve tissue repair and recovery. One promising option is the use of bone marrow-derived mesenchymal stem cells (MSCs), which can secrete anti-inflammatory and trophic factors, can migrate towards inflamed and injured sites or can be implanted locally. Here we tested the hypothesis that pre-treatment with inflammatory cytokines can prime MSCs towards an anti-inflammatory and pro-trophic phenotype in vitro. METHODS: Human MSCs from three different donors were cultured in vitro and treated with inflammatory mediators as follows: interleukin (IL)-1α, IL-1ß, tumour necrosis factor alpha (TNF-α) or interferon-γ. After 24 h of treatment, cell supernatants were analysed by ELISA for expression of granulocyte-colony stimulating factor (G-CSF), IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), IL-1 receptor antagonist (IL-1Ra) and vascular endothelial growth factor (VEGF). To confirm the anti-inflammatory potential of MSCs, immortalised mouse microglial BV2 cells were treated with bacterial lipopolysaccharide (LPS) and exposed to conditioned media (CM) of naïve or IL-1-primed MSCs, and levels of secreted microglial-derived inflammatory mediators including TNF-α, IL-10, G-CSF and IL-6 were measured by ELISA. RESULTS: Unstimulated MSCs constitutively expressed anti-inflammatory cytokines and trophic factors (IL-10, VEGF, BDNF, G-CSF, NGF and IL-1Ra). MSCs primed with IL-1α or IL-1ß showed increased secretion of G-CSF, which was blocked by IL-1Ra. Furthermore, LPS-treated BV2 cells secreted less inflammatory and apoptotic markers, and showed increased secretion of the anti-inflammatory IL-10 in response to treatment with CM of IL-1-primed MSCs compared with CM of unprimed MSCs. CONCLUSIONS: Our results demonstrate that priming MSCs with IL-1 increases expression of trophic factor G-CSF through an IL-1 receptor type 1 (IL-1R1) mechanism, and induces a reduction in the secretion of inflammatory mediators in LPS-activated microglial cells. The results therefore support the potential use of preconditioning treatments of stem cells in future therapies.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Interleukin-1alpha/pharmacology , Interleukin-1beta/pharmacology , Mesenchymal Stem Cells/cytology , Adult , Animals , Biomarkers/metabolism , Culture Media, Conditioned/pharmacology , Female , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Microglia/cytology , Microglia/drug effects , Nerve Growth Factors/pharmacology , Phenotype , Tumor Necrosis Factor-alpha/metabolism , Young Adult
8.
Brain Behav Immun ; 61: 117-126, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27856349

ABSTRACT

Neuroprotective strategies for ischemic stroke have failed to translate from bench to bedside, possibly due to the lack of consideration of key clinical co-morbidities. Stroke and co-morbidities are associated with raised levels of the pro-inflammatory cytokine interleukin-1 (IL-1). Inhibition of IL-1 by the administration of interleukin-1 receptor antagonist (IL-1Ra) has shown to be neuroprotective after experimental cerebral ischemia. Stroke can also trigger a robust neuroreparative response following injury, yet many of these new born neurons fail to survive or integrate into pre-existing circuits. Thus, we explore here effects of IL-1Ra on post-stroke neurogenesis in young and aged/co-morbid rats. Aged lean, aged Corpulent (a model of atherosclerosis, obesity and insulin resistance) and young Wistar male rats were exposed to transient cerebral ischemia, received subcutaneous IL-1Ra 3 and 6h during reperfusion, and effects on stroke outcome and neurogenesis were analyzed. Our results show that administration of IL-1Ra improves stroke outcome in both young and aged/co-morbid rats. Furthermore, IL-1Ra not only increases stem cell proliferation, but also significantly enhances neuroblast migration and the number of newly born neurons after cerebral ischemia. Overall, our data demonstrate that systemic administration of IL-1Ra improves outcome and promotes neurogenesis after experimental stroke, further highlighting the therapeutic potential of this clinically approved drug.


Subject(s)
Brain Ischemia/drug therapy , Brain/drug effects , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Neurogenesis/drug effects , Neuroprotective Agents/therapeutic use , Stroke/drug therapy , Animals , Cell Movement/drug effects , Interleukin 1 Receptor Antagonist Protein/pharmacology , Male , Neurons/drug effects , Neuroprotective Agents/pharmacology , Rats , Rats, Wistar , Time Factors
9.
Stroke ; 47(5): 1312-1318, 2016 05.
Article in English | MEDLINE | ID: mdl-27032444

ABSTRACT

BACKGROUND AND PURPOSE: The debate over the fact that experimental drugs proposed for the treatment of stroke fail in the translation to the clinical situation has attracted considerable attention in the literature. In this context, we present a retrospective pooled analysis of a large data set from preclinical studies, to examine the effects of early versus late administration of intravenous recombinant tissue-type plasminogen activator. METHODS: We collected data from 26 individual studies from 9 international centers (13 researchers; 716 animals) that compared recombinant tissue-type plasminogen activator with controls, in a unique mouse model of thromboembolic stroke induced by an in situ injection of thrombin into the middle cerebral artery. Studies were classified into early (<3 hours) versus late (≥3 hours) drug administration. Final infarct volumes, assessed by histology or magnetic resonance imaging, were compared in each study, and the absolute differences were pooled in a random-effect meta-analysis. The influence of time of administration was tested. RESULTS: When compared with saline controls, early recombinant tissue-type plasminogen activator administration was associated with a significant benefit (absolute difference, -6.63 mm(3); 95% confidence interval, -9.08 to -4.17; I(2)=76%), whereas late recombinant tissue-type plasminogen activator treatment showed a deleterious effect (+5.06 mm(3); 95% confidence interval, +2.78 to +7.34; I(2)=42%; Pint<0.00001). Results remained unchanged after subgroup analyses. CONCLUSIONS: Our results provide the basis needed for the design of future preclinical studies on recanalization therapies using this model of thromboembolic stroke in mice. The power analysis reveals that a multicenter trial would require 123 animals per group instead of 40 for a single-center trial.


Subject(s)
Brain Ischemia/drug therapy , Fibrinolytic Agents/pharmacology , Stroke/drug therapy , Tissue Plasminogen Activator/pharmacology , Animals , Brain Ischemia/pathology , Disease Models, Animal , Fibrinolytic Agents/administration & dosage , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Male , Mice , Mice, Inbred C57BL , Stroke/pathology , Tissue Plasminogen Activator/administration & dosage
11.
J Pharmacokinet Pharmacodyn ; 43(1): 1-12, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26476629

ABSTRACT

Interleukin-1 receptor antagonist, a naturally-occurring antagonist to the pro-inflammatory cytokine Interleukin-1, is already in clinical use. In experimental models of stroke, Interleukin-1 receptor antagonist in cerebrospinal fluid has been associated with cerebral neuroprotection and in a phase I clinical trial in patients with subarachnoid haemorrhage it crosses the blood-cerebrospinal fluid barrier. The aims of the current work were to design a dose-ranging clinical study in patients and to analyse the plasma and cerebrospinal fluid data obtained using a population pharmacokinetic modelling approach. The study was designed using prior information: a published population pharmacokinetic model and associated parameter estimates. Simulations were carried out to identify combinations of intravenous bolus and 4 h infusion doses that could achieve a concentration of 100 ng/ml in cerebrospinal fluid within approximately 30 min. The most informative time points for plasma and cerebrospinal fluid were obtained prospectively; optimisation identified five sampling time points that were included in the 15 time points in the present study design. All plasma and cerebrospinal fluid concentration data from previous and current studies were combined for updated analysis. The result of the simulations showed that a dosage regimen of 500 mg intravenous bolus and 10 mg/kg/h could achieve the target concentration, however four other regimens that represent a stepwise increase in maximum concentration were also selected. Analysis of the updated data showed improvement in parameter accuracy and predictive performance of the model; the percentage relative standard errors for fixed and random-effects parameters were <15 and 35% respectively. A dose-ranging study was successfully designed using modelling and simulation.


Subject(s)
Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin 1 Receptor Antagonist Protein/pharmacokinetics , Algorithms , Blood/metabolism , Cerebrospinal Fluid/metabolism , Computer Simulation , Humans , Infusions, Intravenous , Models, Statistical , Research Design , Subarachnoid Hemorrhage/metabolism
12.
J Cereb Blood Flow Metab ; 36(3): 596-605, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26661169

ABSTRACT

Stroke represents a global challenge and is a leading cause of permanent disability worldwide. Despite much effort, translation of research findings to clinical benefit has not yet been successful. Failure of neuroprotection trials is considered, in part, due to the low quality of preclinical studies, low level of reproducibility across different laboratories and that stroke co-morbidities have not been fully considered in experimental models. More rigorous testing of new drug candidates in different experimental models of stroke and initiation of preclinical cross-laboratory studies have been suggested as ways to improve translation. However, to our knowledge, no drugs currently in clinical stroke trials have been investigated in preclinical cross-laboratory studies. The cytokine interleukin 1 is a key mediator of neuronal injury, and the naturally occurring interleukin 1 receptor antagonist has been reported as beneficial in experimental studies of stroke. In the present paper, we report on a preclinical cross-laboratory stroke trial designed to investigate the efficacy of interleukin 1 receptor antagonist in different research laboratories across Europe. Our results strongly support the therapeutic potential of interleukin 1 receptor antagonist in experimental stroke and provide further evidence that interleukin 1 receptor antagonist should be evaluated in more extensive clinical stroke trials.


Subject(s)
Interleukin 1 Receptor Antagonist Protein/therapeutic use , Neuroprotective Agents/therapeutic use , Receptors, Interleukin-1/antagonists & inhibitors , Stroke/drug therapy , Animals , Brain/drug effects , Brain/immunology , Brain/pathology , Brain Edema/complications , Brain Edema/drug therapy , Brain Edema/immunology , Brain Edema/pathology , Brain Ischemia/complications , Brain Ischemia/drug therapy , Brain Ischemia/immunology , Brain Ischemia/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Inflammation/complications , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Interleukin-1/immunology , Stroke/complications , Stroke/immunology , Stroke/pathology
13.
Eur J Immunol ; 46(4): 912-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26692072

ABSTRACT

IL-1 is a key cytokine known to drive chronic inflammation and to regulate many physiological, immunological, and neuroimmunological responses via actions on diverse cell types of the body. To determine the mechanisms of IL-1 actions as part of the inflammatory response in vivo, we generated a conditional IL-1 receptor 1 (IL-1R1) mouse mutant using the Cre/LoxP system (IL-1R1(fl/fl) ). In the mutant generated, exon 5, which encodes part of the extracellular-binding region of the receptor, is flanked by LoxP sites, thereby inactivating the two previously described functional IL-1R1 gene transcripts after Cre-mediated recombination. Using keratin 14-Cre driver mice, new IL-1R1 deficient (-/-) mice were subsequently generated, in which all signaling IL-1 receptor isoforms are deleted ubiquitously. Furthermore, using vav-iCre driver mice, we deleted IL-1 receptor isoforms in the hematopoietic system. In these mice, we show that both the IL-17 and IL-22 cytokine response is reduced, when mice are challenged by the helminth Trichuris muris. We are currently crossing IL-1R1(fl/fl) mice with different Cre-expressing mice in order to study mechanisms of acute and chronic inflammatory diseases.


Subject(s)
Inflammation/immunology , Interleukin-17/biosynthesis , Interleukins/biosynthesis , Receptors, Interleukin-1 Type I/genetics , Trichuris/immunology , Animals , Interleukin-17/immunology , Interleukins/immunology , Keratin-14/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1 Type I/immunology , Interleukin-22
14.
Exp Physiol ; 100(12): 1488-94, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26096539

ABSTRACT

NEW FINDINGS: What is the topic of this review? This review discusses the latest findings on the contribution of inflammation to brain injury, how inflammation is a therapeutic target, and details of recent and forthcoming clinical studies. What advances does it highlight? Here we highlight recent advances on the role and regulation of inflammasomes, and the latest clinical progress in targeting inflammation. Acute brain injury is one of the leading causes of mortality and disability worldwide. Despite this, treatments for acute brain injuries are limited, and there remains a massive unmet clinical need. Inflammation has emerged as a major contributor to non-communicable diseases, and there is now substantial and growing evidence that inflammation, driven by the cytokine interleukin-1 (IL-1), worsens acute brain injury. Interleukin-1 is regulated by large, multimolecular complexes called inflammasomes. Here, we discuss the latest research on the regulation of inflammasomes and IL-1 in the brain, preclinical efforts to establish the IL-1 system as a therapeutic target, and the promise of recent and future clinical studies on blocking the action of IL-1 for the treatment of brain injury.


Subject(s)
Brain Injuries/drug therapy , Brain/drug effects , Interleukin-1/pharmacology , Interleukin-1/therapeutic use , Animals , Humans , Inflammasomes/drug effects , Inflammation/drug therapy
15.
Proc Natl Acad Sci U S A ; 112(13): 4050-5, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25775556

ABSTRACT

Inflammation that contributes to acute cerebrovascular disease is driven by the proinflammatory cytokine interleukin-1 and is known to exacerbate resulting injury. The activity of interleukin-1 is regulated by multimolecular protein complexes called inflammasomes. There are multiple potential inflammasomes activated in diverse diseases, yet the nature of the inflammasomes involved in brain injury is currently unknown. Here, using a rodent model of stroke, we show that the NLRC4 (NLR family, CARD domain containing 4) and AIM2 (absent in melanoma 2) inflammasomes contribute to brain injury. We also show that acute ischemic brain injury is regulated by mechanisms that require ASC (apoptosis-associated speck-like protein containing a CARD), a common adaptor protein for several inflammasomes, and that the NLRP3 (NLR family, pyrin domain containing 3) inflammasome is not involved in this process. These discoveries identify the NLRC4 and AIM2 inflammasomes as potential therapeutic targets for stroke and provide new insights into how the inflammatory response is regulated after an acute injury to the brain.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Brain Injuries/metabolism , Calcium-Binding Proteins/metabolism , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Animals , Brain/metabolism , Brain/pathology , Brain Ischemia/pathology , CARD Signaling Adaptor Proteins , Cell Death , Cytokines/metabolism , Hypoxia/pathology , Infarction, Middle Cerebral Artery/pathology , Inflammation/pathology , Ischemia/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , NLR Family, Pyrin Domain-Containing 3 Protein , Protein Structure, Tertiary
16.
Eur J Immunol ; 45(2): 525-30, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25367678

ABSTRACT

The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defense but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1α is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders.


Subject(s)
Brain/immunology , Encephalitis/immunology , Interleukin-1alpha/genetics , Interleukin-1beta/genetics , Microglia/immunology , Signal Transduction/immunology , Animals , Brain/pathology , Encephalitis/chemically induced , Encephalitis/genetics , Encephalitis/pathology , Gene Expression Regulation , Immunity, Innate , Injections, Intraventricular , Interleukin-1alpha/deficiency , Interleukin-1alpha/immunology , Interleukin-1beta/deficiency , Interleukin-1beta/immunology , Lipopolysaccharides , Lung/immunology , Mice , Mice, Knockout , Microglia/pathology , Neutrophil Infiltration , Neutrophils/immunology , Neutrophils/pathology , Organ Specificity , Peritoneum/immunology
17.
Behav Brain Res ; 270: 18-28, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24821402

ABSTRACT

Cerebral ischemia is one of the most common causes of disabilities in adults and leads to long-term motor and cognitive impairments with limited therapeutic possibilities. Treatment options have proven efficient in preclinical models of cerebral ischemia but have failed in the clinical setting. This limited translation may be due to the suitability of models used and outcomes measured as most studies have focused on the early period after injury with gross motor scales, which have limited correlation to the clinical situation. The aim of this study was to determine long-term functional outcomes after cerebral ischemia in rats, focusing on fine motor function, social and depressive behavior as clinically relevant measures. A secondary objective was to evaluate the effects of an anti-inflammatory treatment (interleukin-1 receptor antagonist (IL-1Ra)) on functional recovery and compensation. Infarct volume was correlated with long-term (25 days) impairments in fine motor skills, but not with emotional components of behavior. Motor impairments could not be detected using conventional neurological tests and only detailed analysis allowed differentiation between recovery and compensation. Acute systemic administration of IL-1Ra (at reperfusion) led to a faster and more complete recovery, but delayed (24h) IL-1Ra treatment had no effect. In summary functional assessment after brain injury requires detailed motor tests in order to address long-term impairments and compensation processes that are mediated by intact tissues. Functional deficits in skilled movement after brain injury represent ideal predictors of long-term outcomes and should become standard measures in the assessment of preclinical animal models.


Subject(s)
Brain Ischemia/physiopathology , Brain Ischemia/psychology , Brain/pathology , Motor Activity , Social Behavior , Animals , Antirheumatic Agents/administration & dosage , Brain/drug effects , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Depression/drug therapy , Depression/psychology , Disease Models, Animal , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Male , Motor Activity/drug effects , Rats , Rats, Wistar , Recovery of Function , Time Factors , Treatment Outcome
18.
J Biol Chem ; 289(23): 15942-50, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24790078

ABSTRACT

The cytokine interleukin-1 (IL-1) has two main pro-inflammatory forms, IL-1α and IL-1ß, which are central to host responses to infection and to damaging sterile inflammation. Processing of IL-1 precursor proteins to active cytokines commonly occurs through activation of proteases, notably caspases and calpains. These proteases are instrumental in cell death, and inflammation and cell death are closely associated, hence we sought to determine the impact of cell death pathways on IL-1 processing and release. We discovered that apoptotic regulation of caspase-8 specifically induced the processing and release of IL-1ß. Conversely, necroptosis caused the processing and release of IL-1α, and this was independent of IL-1ß processing and release. These data suggest that the mechanism through which an IL-1-expressing cell dies dictates the nature of the inflammatory mechanism that follows. These insights may allow modification of inflammation through the selective targeting of cell death mechanisms during disease.


Subject(s)
Apoptosis , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Animals , Calcium/metabolism , Calpain/metabolism , Caspase 8/metabolism , Cells, Cultured , Mice , Mice, Inbred C57BL , Necrosis
19.
Ann Neurol ; 75(5): 670-83, 2014 May.
Article in English | MEDLINE | ID: mdl-24644058

ABSTRACT

OBJECTIVE: Bacterial infection contributes to diverse noninfectious diseases and worsens outcome after stroke. Streptococcus pneumoniae, the most common infection in patients at risk of stroke, is a major cause of prolonged hospitalization and death of stroke patients, but how infection impacts clinical outcome is not known. METHODS: We induced sustained pulmonary infection by a human S. pneumoniae isolate in naive and comorbid rodents to investigate the effect of infection on vascular and inflammatory responses prior to and after cerebral ischemia. RESULTS: S. pneumoniae infection triggered atherogenesis, led to systemic induction of interleukin (IL) 1, and profoundly exacerbated (50-90%) ischemic brain injury in rats and mice, a response that was more severe in combination with old age and atherosclerosis. Systemic blockade of IL-1 with IL-1 receptor antagonist (IL-1Ra) fully reversed infection-induced exacerbation of brain injury and functional impairment caused by cerebral ischemia. We show that infection-induced systemic inflammation mediates its effects via increasing platelet activation and microvascular coagulation in the brain after cerebral ischemia, as confirmed by reduced brain injury in response to blockade of platelet glycoprotein (GP) Ibα. IL-1 and platelet-mediated signals converge on microglia, as both IL-1Ra and GPIbα blockade reversed the production of IL-1α by microglia in response to cerebral ischemia in infected animals. INTERPRETATION: S. pneumoniae infection augments atherosclerosis and exacerbates ischemic brain injury via IL-1 and platelet-mediated systemic inflammation. These mechanisms may contribute to diverse cardio- and cerebrovascular pathologies in humans.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/pathology , Interleukin-1/adverse effects , Platelet Glycoprotein GPIb-IX Complex/adverse effects , Streptococcal Infections/metabolism , Streptococcal Infections/pathology , Streptococcus pneumoniae , Animals , Brain Ischemia/microbiology , Disease Progression , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Interleukin-1/physiology , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/microbiology , Microglia/pathology , Platelet Activation , Platelet Glycoprotein GPIb-IX Complex/antagonists & inhibitors , Platelet Glycoprotein GPIb-IX Complex/physiology , Rats , Rats, Wistar , Streptococcal Infections/microbiology
20.
J Neuroinflammation ; 11: 1, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24383930

ABSTRACT

BACKGROUND: Interleukin-1 (IL-1) is a key mediator of ischaemic brain injury induced by stroke and subarachnoid haemorrhage (SAH). IL-1 receptor antagonist (IL-1Ra) limits brain injury in experimental stroke and reduces plasma inflammatory mediators associated with poor outcome in ischaemic stroke patients. Intravenous (IV) IL-1Ra crosses the blood-brain barrier (BBB) in patients with SAH, to achieve cerebrospinal fluid (CSF) concentrations that are neuroprotective in rats. METHODS: A small phase II, double-blind, randomised controlled study was carried out across two UK neurosurgical centres with the aim of recruiting 32 patients. Adult patients with aneurysmal SAH, requiring external ventricular drainage (EVD) within 72 hours of ictus, were eligible. Patients were randomised to receive IL-1Ra (500 mg bolus, then a 10 mg/kg/hr infusion for 24 hours) or placebo. Serial samples of CSF and plasma were taken and analysed for inflammatory mediators, with change in CSF IL-6 between 6 and 24 hours as the primary outcome measure. RESULTS: Six patients received IL-1Ra and seven received placebo. Concentrations of IL-6 in CSF and plasma were reduced by one standard deviation in the IL-1Ra group compared to the placebo group, between 6 and 24 hours, as predicted by the power calculation. This did not reach statistical significance (P = 0.08 and P = 0.06, respectively), since recruitment did not reach the target figure of 32. No adverse or serious adverse events reported were attributable to IL-1Ra. CONCLUSIONS: IL-1Ra appears safe in SAH patients. The concentration of IL-6 was lowered to the degree expected, in both CSF and plasma for patients treated with IL-1Ra.


Subject(s)
Cytokines/cerebrospinal fluid , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Subarachnoid Hemorrhage/cerebrospinal fluid , Subarachnoid Hemorrhage/drug therapy , Administration, Intravenous , Adult , Aged , Area Under Curve , Cytokines/blood , Double-Blind Method , Enzyme-Linked Immunosorbent Assay , Female , Glasgow Coma Scale , Humans , Male , Middle Aged , Subarachnoid Hemorrhage/blood , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...