Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 10(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36829682

ABSTRACT

In recent years, the treatment of aortic stenosis with TAVR has rapidly expanded to younger and lower-risk patients. However, persistent thrombotic events such as stroke and valve thrombosis expose recipients to severe clinical complications that hamper TAVR's rapid advance. We presented a novel methodology for establishing a link between commonly acceptable mild paravalvular leak (PVL) levels through the device and increased thrombogenic risk. It utilizes in vitro patient-specific TAVR 3D-printed replicas evaluated for hydrodynamic performance. High-resolution µCT scans are used to reconstruct in silico FSI models of these replicas, in which multiple platelet trajectories are studied through the PVL channels to quantify thrombogenicity, showing that those are highly dependent on patient-specific flow conditions within the PVL channels. It demonstrates that platelets have the potential to enter the PVL channels multiple times over successive cardiac cycles, increasing the thrombogenic risk. This cannot be reliably approximated by standard hemodynamic parameters. It highlights the shortcomings of subjectively ranked PVL commonly used in clinical practice by indicating an increased thrombogenic risk in patient cases otherwise classified as mild PVL. It reiterates the need for more rigorous clinical evaluation for properly diagnosing thrombogenic risk in TAVR patients.

2.
J Biomech Eng ; 144(6)2022 06 01.
Article in English | MEDLINE | ID: mdl-35318480

ABSTRACT

Tissue-based transcatheter aortic valve (AV) replacement (TAVR) devices have been a breakthrough approach for treating aortic valve stenosis. However, with the expansion of TAVR to younger and lower risk patients, issues of long-term durability and thrombosis persist. Recent advances in polymeric valve technology facilitate designing more durable valves with minimal in vivo adverse reactions. We introduce our second-generation polymeric transcatheter aortic valve (TAV) device, designed and optimized to address these issues. We present the optimization process of the device, wherein each aspect of device deployment and functionality was optimized for performance, including unique considerations of polymeric technologies for reducing the volume of the polymer material for lower crimped delivery profiles. The stent frame was optimized to generate larger radial forces with lower material volumes, securing robust deployment and anchoring. The leaflet shape, combined with varying leaflets thickness, was optimized for reducing the flexural cyclic stresses and the valve's hydrodynamics. Our first-generation polymeric device already demonstrated that its hydrodynamic performance meets and exceeds tissue devices for both ISO standard and patient-specific in vitro scenarios. The valve already reached 900 × 106 cycles of accelerated durability testing, equivalent to over 20 years in a patient. The optimization framework and technology led to the second generation of polymeric TAV design- currently undergoing in vitro hydrodynamic testing and following in vivo animal trials. As TAVR use is rapidly expanding, our rigorous bio-engineering optimization methodology and advanced polymer technology serve to establish polymeric TAV technology as a viable alternative to the challenges facing existing tissue-based TAV technology.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Animals , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Heart Valve Prosthesis/adverse effects , Humans , Polymers
3.
J Cardiovasc Transl Res ; 14(5): 883-893, 2021 10.
Article in English | MEDLINE | ID: mdl-33415522

ABSTRACT

Short peripheral catheters are ubiquitous in today's healthcare environment, enabling effective and direct delivery of fluids and medications intravenously. A commonly associated complication of their use is thrombophlebitis-thrombus formation-involved inflammation of the vein wall. A novel design of a very short peripheral catheter showed promising results in a pig model in reducing the mechanical irritation to the vein wall. Here, the kinetics of drug release through the novel catheter was compared to a standard commercial catheter using experimental and computational models. In a good agreement, in vitro and in silico models reveal the superiority of the novel catheter design with faster washout time, favorable spatial distribution within the vein, and substantially lower wall shear stress. We submit therefore that the novel design has an improved drug removal profile compared to the conventional catheter and can potentially reduce chemical irritation to the vein wall and minimize the risk for thrombophlebitis. CLINICAL RELEVANCE: Short peripheral catheters are ubiquitous in today's healthcare environment, allowing effective and direct delivery of fluids and medications intravenously. It is well known, however, that prolonged exposure to an irritant drug may lead to its absorption in the endothelial layer lining the vein wall, promoting among other, thrombophlebitis that may lead to increased morbidity, delayed treatment, and prolonged hospitalization. There have been multiple calls to consider low infusion rates with various infusion protocols and to place the catheter tip as central as possible to promote faster drug clearance and reduce the potential vessel damage, but the requisite device had not been available, and the short peripheral catheter is still, and for decades, the standard of care. Towards this end, we recently introduced a novel very short peripheral catheter design, and here, we demonstrate using experimental and computational models its favorable spatial and temporal drug-releasing profiles compared with the standard catheter. The clinically potential relevance is underscore both by the more efficient perfusion of IV drugs and lower irritation to the vein wall at the site of injection. Graphical abstract.


Subject(s)
Catheterization, Peripheral , Animals , Catheterization, Peripheral/adverse effects , Catheters , Drug Liberation , Kinetics , Stress, Mechanical , Swine
4.
Artif Organs ; 45(4): E41-E52, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33031563

ABSTRACT

Following in vitro tests established for surgical prosthetic heart valves, transcatheter aortic valves (TAV) are similarly tested in idealized geometries-excluding effects that may hamper TAVR performance in situ. Testing in vitro in pulse duplicator systems that incorporated patient-specific replicas would enhance the testing veracity by bringing it closer to the clinical scenario. To that end we compare TAV hemodynamic performance tested in idealized geometries according to the ISO standard (baseline performance) to that obtained by testing the TAVs following deployment in patient-specific replicas. Balloon-expandable (n = 2) and self-expandable (n = 3) TAVs were tested in an idealized geometry in mock-circulation system (following ISO 5840-3 guidelines) and compared to the measurements in a dedicated mock-circulation system adapted for the five patient-specific replicas. Patient-specific deployments resulted in a decline in performance as compared to the baseline idealized testing, as well as a variation in performance that depended on the design features of each device that was further correlated with the radial expansion and eccentricity of the deployed TAV stent (obtained with CT-scans of the deployed valves). By excluding the deployment effects in irregular geometries, the current idealized ISO testing is limited to characterize the baseline device performance. Utilizing patient-specific anatomic contours provides performance indicators under more stringent conditions likely encountered in vivo. It has the potential to enhance testing and development complementary to the ISO standard, for improved TAV safety and effectiveness.


Subject(s)
Aortic Valve Stenosis/surgery , Transcatheter Aortic Valve Replacement/standards , Aortic Valve Stenosis/diagnostic imaging , Humans , Hydrodynamics , In Vitro Techniques , Models, Cardiovascular , Patient Selection , Prosthesis Design , Prosthesis Failure , Stents , Tomography, X-Ray Computed
5.
Biomech Model Mechanobiol ; 19(2): 779, 2020 04.
Article in English | MEDLINE | ID: mdl-31965351

ABSTRACT

This is to inform that the original article was published without the "Conflict of Interest" statement.

6.
ASAIO J ; 66(2): 190-198, 2020 02.
Article in English | MEDLINE | ID: mdl-30845067

ABSTRACT

Transcatheter aortic valve replacement (TAVR) has emerged as an effective therapy for the unmet clinical need of inoperable patients with severe aortic stenosis (AS). Current clinically used tissue TAVR valves suffer from limited durability that hampers TAVR's rapid expansion to younger, lower risk patients. Polymeric TAVR valves optimized for hemodynamic performance, hemocompatibility, extended durability, and resistance to calcific degeneration offer a viable solution to this challenge. We present extensive in vitro durability and stability testing of a novel polymeric TAVR valve (PolyNova valve) using 1) accelerated wear testing (AWT, ISO 5840); 2) calcification susceptibility (in the AWT)-compared with clinically used tissue valves; and 3) extended crimping stability (valves crimped to 16 Fr for 8 days). Hydrodynamic testing was performed every 50M cycles. The valves were also evaluated visually for structural integrity and by scanning electron microscopy for evaluation of surface damage in the micro-scale. Calcium and phosphorus deposition was evaluated using micro-computed tomography (µCT) and inductive coupled plasma spectroscopy. The valves passed 400M cycles in the AWT without failure. The effective orifice area kept stable at 1.8 cm with a desired gradual decrease in transvalvular pressure gradient and regurgitation (10.4 mm Hg and 6.9%, respectively). Calcium and phosphorus deposition was significantly lower in the polymeric valve: down by a factor of 85 and 16, respectively-as compared to a tissue valve. Following the extended crimping testing, no tears nor surface damage were evident. The results of this study demonstrate the potential of a polymeric TAVR valve to be a viable alternative to tissue-based TAVR valves.


Subject(s)
Heart Valve Prosthesis , Materials Testing , Styrenes , Aortic Valve Stenosis/surgery , Calcinosis/etiology , Heart Valve Prosthesis/adverse effects , Hemodynamics , Humans , In Vitro Techniques , Transcatheter Aortic Valve Replacement/instrumentation , Transcatheter Aortic Valve Replacement/methods
7.
Ann Biomed Eng ; 47(1): 113-125, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30194551

ABSTRACT

Transcatheter aortic valve replacement (TAVR) is a minimally-invasive approach for treating severe aortic stenosis. All clinically-used TAVR valves to date utilize chemically-fixed xenograft as the leaflet material. Inherent limitation of the tissue (e.g., calcific degeneration) motivates the search for alternative leaflet material. Here we introduce a novel polymeric TAVR valve that was designed to address the limitations of tissue-valves. In this study, we experimentally evaluated the hemodynamic performance of the valve and compared its performance to clinically-used valves: a gold standard surgical tissue valve, and a TAVR valve. Our comparative testing protocols included: (i) baseline hydrodynamics (ISO:5840-3), (ii) complementary patient-specific hydrodynamics in a dedicated system, and (iii) thrombogenicity. The patient-specific testing system facilitated comparing TAVR valves performance under more realistic conditions. Baseline hydrodynamics results at CO 4-7 L/min showed superior effective orifice area (EOA) for the polymer valve, most-notably as compared to the reference TAVR valve. Regurgitation fraction was higher in the polymeric valve, but within the ISO minimum requirements. Thrombogenicity trends followed the EOA results with the polymeric valve being the least thrombogenic, and clinical TAVR being the most. Hemodynamic-wise, the results strongly indicate that our polymeric TAVR valve can outperform tissue valves.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Bioprosthesis , Heart Valve Prosthesis , Hemodynamics , Models, Cardiovascular , Transcatheter Aortic Valve Replacement , Aortic Valve/pathology , Aortic Valve/physiopathology , Aortic Valve/surgery , Aortic Valve Stenosis/pathology , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/surgery , Humans , Thrombosis/etiology , Thrombosis/pathology , Thrombosis/physiopathology , Thrombosis/prevention & control
8.
Biomech Model Mechanobiol ; 18(2): 435-451, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30460623

ABSTRACT

Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL. In this study finite element analysis and computational fluid dynamics were used to investigate the influence of procedural parameters on post-deployment hemodynamics on three retrospective clinical cases affected by PVL. Specifically, TAV implantation depth and balloon inflation volume effects on stent anchorage, degree of paravalvular regurgitation and thrombogenic potential were analyzed for cases in which Edwards SAPIEN and Medtronic CoreValve were employed. CFD results were in good agreement with corresponding echocardiography data measured in patients in terms of the PVL jets locations and overall PVL degree. Furthermore, parametric analyses demonstrated that positioning and balloon over-expansion may have a direct impact on the post-deployment TAVR performance, achieving as high as 47% in PVL volume reduction. While the model predicted very well clinical data, further validation on a larger cohort of patients is needed to verify the level of the model's predictions in various patient-specific conditions. This study demonstrated that rigorous and realistic patient-specific numerical models could potentially serve as a valuable tool to assist physicians in pre-operative TAVR planning and TAV selection to ultimately reduce the risk of clinical complications.


Subject(s)
Aortic Valve/surgery , Computer Simulation , Transcatheter Aortic Valve Replacement , Blood Flow Velocity/physiology , Hemodynamics/physiology , Humans , Regional Blood Flow/physiology , Stents , Stress, Mechanical , Thrombosis/pathology
9.
Expert Rev Med Devices ; 15(11): 771-791, 2018 11.
Article in English | MEDLINE | ID: mdl-30318937

ABSTRACT

INTRODUCTION: Transcatheter aortic valve replacement (TAVR) has emerged as an effective minimally-invasive alternative to surgical valve replacement in medium- to high-risk, elderly patients with calcific aortic valve disease and severe aortic stenosis. The rapid growth of the TAVR devices market has led to a high variety of designs, each aiming to address persistent complications associated with TAVR valves that may hamper the anticipated expansion of TAVR utility. AREAS COVERED: Here we outline the challenges and the technical demands that TAVR devices need to address for achieving the desired expansion, and review design aspects of selected, latest generation, TAVR valves of both clinically-used and investigational devices. We further review in detail some of the up-to-date modeling and testing approaches for TAVR, both computationally and experimentally, and additionally discuss those as complementary approaches to the ISO 5840-3 standard. A comprehensive survey of the prior and up-to-date literature was conducted to cover the most pertaining issues and challenges that TAVR technology faces. EXPERT COMMENTARY: The expansion of TAVR over SAVR and to new indications seems more promising than ever. With new challenges to come, new TAV design approaches, and materials used, are expected to emerge, and novel testing/modeling methods to be developed.


Subject(s)
Prosthesis Design , Transcatheter Aortic Valve Replacement , Animals , Aortic Valve/pathology , Aortic Valve Stenosis/therapy , Calcinosis/therapy , Heart Valve Prosthesis , Humans , Off-Label Use , Polymers/chemistry , Transcatheter Aortic Valve Replacement/adverse effects
10.
Cardiovasc Eng Technol ; 9(3): 339-350, 2018 09.
Article in English | MEDLINE | ID: mdl-29654509

ABSTRACT

Transcatheter aortic valve replacement (TAVR) is an over-the-wire procedure for treatment of severe aortic stenosis (AS). TAVR valves are conventionally tested using simplified left heart simulators (LHS). While those provide baseline performance reliably, their aortic root geometries are far from the anatomical in situ configuration, often overestimating the valves' performance. We report on a novel benchtop patient-specific arterial replicator designed for testing TAVR and training interventional cardiologists in the procedure. The Replicator is an accurate model of the human upper body vasculature for training physicians in percutaneous interventions. It comprises of fully-automated Windkessel mechanism to recreate physiological flow conditions. Calcified aortic valve models were fabricated and incorporated into the Replicator, then tested for performing TAVR procedure by an experienced cardiologist using the Inovare valve. EOA, pressures, and angiograms were monitored pre- and post-TAVR. A St. Jude mechanical valve was tested as a reference that is less affected by the AS anatomy. Results in the Replicator of both valves were compared to the performance in a commercial ISO-compliant LHS. The AS anatomy in the Replicator resulted in a significant decrease of the TAVR valve performance relative to the simplified LHS, with EOA and transvalvular pressures comparable to clinical data. Minor change was seen in the mechanical valve performance. The Replicator showed to be an effective platform for TAVR testing. Unlike a simplified geometric anatomy LHS, it conservatively provides clinically-relevant outcomes and complement it. The Replicator can be most valuable for testing new valves under challenging patient anatomies, physicians training, and procedural planning.


Subject(s)
Aorta/surgery , Aortic Valve Stenosis/surgery , Aortic Valve/pathology , Aortic Valve/surgery , Calcinosis/surgery , Heart Valve Prosthesis , Materials Testing/methods , Models, Anatomic , Models, Cardiovascular , Transcatheter Aortic Valve Replacement/instrumentation , Aorta/diagnostic imaging , Aorta/physiopathology , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Aortic Valve Insufficiency/etiology , Aortic Valve Insufficiency/physiopathology , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/physiopathology , Aortography/methods , Calcinosis/diagnostic imaging , Calcinosis/physiopathology , Cardiologists/education , Computed Tomography Angiography , Education, Medical, Graduate/methods , Hemodynamics , Humans , Iliac Artery/diagnostic imaging , Patient-Specific Modeling , Printing, Three-Dimensional , Prosthesis Design , Simulation Training/methods , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/education
11.
PLoS One ; 12(1): e0169752, 2017.
Article in English | MEDLINE | ID: mdl-28081186

ABSTRACT

Short peripheral catheters are ubiquitous in today's healthcare environment enabling effective delivery of fluids and medications directly into a patient's vasculature. However, complications related to their use, such as short peripheral catheter thrombophlebitis (SPCT), affect up to 80% of hospitalized patients. While indwelling within the vein, the catheters exert prolonged constant pressure upon the endothelium which can trigger inflammation processes. We have developed and studied an in-vitro model of cultured endothelial cells subjected to mechanical compression of modular self-designed weights, and explored their inflammatory response by quantification of two key biomarkers- vWF and IL-8. Evaluation was performed by ELISA immunoassay and processing of vWF-labeled immunofluorescence images. We found that application of weights correspond to 272 Pa yielded increased release of vWF and IL-8 up to 150% and 250% respectively, comparing to the exertion of 136 Pa. Analyses of the immunofluorescence images revealed significantly longer and more extracellular vWF-strings as well as higher intensity stained-pixels in cells exposed to elevated pressures. The release of both factors found to be significantly dependent on the extent of the exerted pressure. The research shed a light on the relationship between induced mechanical compression and the pathogenesis of SPCT. Minimizing, let alone eliminating the contact between the catheter and the vein wall will mitigate the pressure acting on the endothelium, thereby reducing the secretion of inflammatory factors and lessen the incidence of SPCT.


Subject(s)
Endothelium, Vascular/metabolism , Interleukin-8/metabolism , Stress, Mechanical , von Willebrand Factor/metabolism , Cells, Cultured , Endothelium, Vascular/cytology , Enzyme-Linked Immunosorbent Assay , Humans , Image Processing, Computer-Assisted , Interleukin-8/analysis , Microscopy, Fluorescence , von Willebrand Factor/analysis
13.
J Biomech ; 50: 151-157, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27866674

ABSTRACT

Short peripheral catheter thrombophlebitis (SPCT), a sterile inflammation of the vein wall, is the most common complication associated with short peripheral catheters (SPCs) and affects up to 80% of hospitalized patients receiving IV therapy. Extensive research efforts have been devoted for improvement and optimization of the catheter material, but means for examination of any novel design are limited, inaccurate and require costly comprehensive pre-clinical and clinical trials. Therefore, there is a conclusive need for a reliable quantitative method for evaluation of SPCT, in particular for research purposes examining the thrombophlebitis-related symptoms of any novel catheter design. In this study, we developed for the first time a quantitative MRI based tool for evaluation of SPCT. The extent and severity of SPCT caused by two different commercially available SPCs with known predisposition for thrombophlebitis, were studied in a rabbit model. MRI analysis was consistent with the standardized pathology evaluation and showed remarkable difference in the percent of edema between the experimental groups. These differences were in line with previous studies and provide evidence that this type of analysis may be useful for future assessment of SPCT in vivo. As a non-invasive method, it may constitute a cost effective solution for examination of new catheters and other medical devices, thereby reducing the need for animal sacrifice.


Subject(s)
Catheterization, Peripheral/adverse effects , Thrombophlebitis/diagnostic imaging , Thrombophlebitis/etiology , Veins/diagnostic imaging , Animals , Catheters/adverse effects , Disease Models, Animal , Female , Magnetic Resonance Imaging , Rabbits , Thrombophlebitis/pathology , Veins/pathology
14.
J Biomech ; 50: 130-137, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27866677

ABSTRACT

Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices. The clinical significance is that a single measurement of pressure drop could potentially provide both functional and bio-mechanical metrics of lesions, and thus assist in real-time decision making prior to stenting. The goal of the current study was to set the basis for understanding this relationship, and define the accuracy and sensitivity required from the pressure measurement system. The investigation was performed using numerical fluid-structure interaction (FSI) simulations, validated experimentally using our high accuracy differential pressure measurement system. Simplified silicone mock coronary arteries with zero to intermediate size stenoses were used, and various combinations of arterial distensibility, diameter, and flow rate were simulated. Results of hyperemic flow cases were also compared to fractional flow reserve (FFR). The results indicate the potential clinical superiority of a high accuracy pressure drop-based parameter over FFR, by: (i) being more lesion-specific, (ii) the possibility to circumvent the FFR dependency on pharmacologically-induced hyperemia, and, (iii) by providing both functional and biomechanical lesion-specific information.


Subject(s)
Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Algorithms , Blood Flow Velocity , Blood Pressure , Compliance , Coronary Stenosis/diagnosis , Coronary Stenosis/pathology , Coronary Vessels/pathology , Humans , Models, Cardiovascular
15.
Ann Biomed Eng ; 42(8): 1705-16, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24809725

ABSTRACT

The advantage of measuring differential pressure using fluid-filled catheters is that the system is relatively inexpensive, but the readings are not accurate and affected by the common mode pressure (CMP) distortion. High accuracy differential pressure measurements are required in various biomedical applications, such as in fluid-dynamic test rigs, or in the cath-lab, from cardiac valves efficacy to functional assessment of arterial stenoses. We have designed and built a unique system in which the pressure difference was measured along the fluid flow inside a rigid circular tube using a fluid-filled double-lumen catheter. The differential pressure measurements were taken across two side-holes near the catheter distal tip, spaced apart by 3 cm. The goal was to overcome the CMP error, which significantly distorted the output differential pressure signal and to formulate a restoration factor. A restoration formula was developed based on simultaneous gauge pressure measurements, and was tested in several different cases. Several representative cases are presented and show that the common mode artifact was reduced by factors of 12-27. The restored pressure gradient signal was validated using direct pressure drop measurements, and showed very good agreement.


Subject(s)
Catheterization/instrumentation , Pressure , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...