Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(27): 29840-29847, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005793

ABSTRACT

Nanofibers made of different materials have been continuously studied and widely used as membranes due to their simple fabrication techniques and tunable surface characteristics. In this work, we developed polyacrylonitrile (PAN) nanofiber membranes by the electrospinning method and blended them with polysulfone (PSU) to obtain superhydrophobic surfaces on the fiber structures. The scanning electron microscopy (SEM) images show that the fabricated nanofibers have smooth and continuous morphology. In addition, to observe the effect of the PSU-based blending material, Fourier-transform infrared (FTIR) spectra of the samples were acquired, providing chemical compositions of the bare and PSU-blended PAN nanofibers. The fabricated PSU/PAN composite nanofibers have a diameter range of 222-392 nm. In terms of the wettability, the measured water contact angle (WCA) value of the PAN nanofibers was improved from (14 ± 1)° to (156 ± 6)°, (160 ± 4)°, (156 ± 6)°, and (158 ± 4)° after being blended with PSU solutions having concentrations of 0.5, 1, 1.5, and 2 wt %, respectively. This result has proven that the PAN nanofiber surfaces can be tuned from hydrophilic to superhydrophobic characteristics simply by introducing PSU into the PAN solution prior to electrospinning, where a small PSU concentration of 0.5% has been sufficient to provide the desired effect. Owing to its low-cost and highly efficient process, this strategy may be further explored for other types of polymer-based nanofibers.

2.
Heliyon ; 10(2): e23273, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304819

ABSTRACT

Modification of silica purified from the Merapi volcanic ash with magnetic material of Fe3O4 and attachment of cetyl triamine bromide (CTA-Br) on the magnetic cored has been performed to provide recoverable and positive surfaced of natural adsorbent. The magnetic cored was prepared via co-precipitation and CTA-Br attachment was conducted by a facile strategy. Then, the modified adsorbents were characterized by SEM, TEM, XRD, and FTIR instruments and examined for removing anionic Cr(VI) from the water media. The characterization data confirmed that crystals of Fe3O4 coated by SiO2 that has been bound with CTA-Br have been successfully formed. Additionally, increasing CTA-Br loaded gives thicker lamination on Fe3O4@SiO2/CTA-Br, but the CTA-Br loaded with higher than 0.25 mmol, leads to the coating peeled out. It is also demonstrated that Fe3O4@SiO2/CTA-Br prepared with CTA-Br 0.25 mmol is ideal for Cr(VI) anionic removal, regarding to the highest adsorption and very good separation or recovery process. Moreover, the optimal dose of Fe3O4@SiO2/CTA-Br in the Cr(VI) removal was observed at 0.25 g/20 mL under condition of pH 3 for 60 min. The adsorption of Cr(VI) well fits the Langmuir isotherm model with an adsorption capacity of 3.38 mg g-1 and is in a good agreement with pseudo-second order giving kinetic constant at 0.005 g mg-1 min-1. Thus, it is clear that the natural adsorbent material with recoverable properties for more efficient and wider application of removal Cr(VI) contaminant was expected from this study.

3.
Analyst ; 149(4): 1262-1270, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38226482

ABSTRACT

Real-time detection of formaldehyde in the atmosphere remains challenging. The available gaseous formaldehyde sensing methods offer limited sensitivity, selectivity, and robustness. We modified a quartz crystal microbalance (QCM) system for selective detection of formaldehyde in air. The QCM surface was functionalized with polyvinyl acetate (PVAc) nanofibers and doped with 2, 4, and 6 wt% aniline to improve the selectivity and sensitivity of the sensor. The chemical content and morphological structure of PVAc nanofibers doped with aniline were confirmed by Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The results showed that the modified QCM sensor had a sensitivity of 0.056 Hz ppm-1 with a response and recovery times of 200 s and 90 s, respectively. It gave limits of detection (LOD) and limit of quantification (LOQ) of 28 ppm and 96 ppm, respectively. Moreover, the modified QCM was selective towards formaldehyde compared to the other gases. The current workplace exposure limit (WEL) for formaldehyde is 2 ppm, with a time-weighted average over eight hours. Future work will focus on improving the reported QCM sensor to meet the required LOD for formaldehyde detection in the environment and industrial sites.

4.
NPJ Sci Food ; 7(1): 31, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328497

ABSTRACT

Authentication of meat floss origin has been highly critical for its consumers due to existing potential risks of having allergic diseases or religion perspective related to pork-containing foods. Herein, we developed and assessed a compact portable electronic nose (e-nose) comprising gas sensor array and supervised machine learning with a window time slicing method to sniff and to classify different meat floss products. We evaluated four different supervised learning methods for data classification (i.e., linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbors (k-NN), and random forest (RF)). Among them, an LDA model equipped with five-window-extracted feature yielded the highest accuracy values of >99% for both validation and testing data in discriminating beef, chicken, and pork flosses. The obtained e-nose results were correlated and confirmed with the spectral data from Fourier-transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) measurements. We found that beef and chicken had similar compound groups (i.e., hydrocarbons and alcohol). Meanwhile, aldehyde compounds (e.g., dodecanal and 9-octadecanal) were found to be dominant in pork products. Based on its performance evaluation, the developed e-nose system shows promising results in food authenticity testing, which paves the way for ubiquitously detecting deception and food fraud attempts.

5.
Bull Environ Contam Toxicol ; 109(6): 1183-1189, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36121465

ABSTRACT

A simple and sensitive colorimetric sensor for nickel(II) ions has been successfully prepared by immobilizing α-furil dioxime reagent in the sol-gel matrix with a solid supporting filter paper medium. The sensor was developed using tetraethyl orthosilicate (TEOS) precursors with 4 days aging time, the mole ratio of water: precursor was 4:1, and reagent concentration at 0.10%. The sensor was quantified by utilizing the Red (R), Green (G), and Blue (B) values ​​of the colors that were successfully displayed after the detection process. The RGB value is confirmed by the Euclidean Distance (ED) equation to determine the optimum conditions. There was no observed degree of leaching in plain sight, and the result of leaching investigation by the double dyeing method did not show any significant change. The linear range was ​​0.10 to 2.8 ppm with an R2 of 0.9964. The values of LOD and LOQ were 0.1 ppm and 0.4 ppm, respectively. In addition, the sensor was free from interfering species and had a percent recovery around 90 to 110%.


Subject(s)
Cellulose , Colorimetry , Colorimetry/methods , Nickel , Furans
6.
Article in English | MEDLINE | ID: mdl-34886331

ABSTRACT

(1) Background: Neglected occupational health and safety aspects in batik industries cause their workers to have an increased risk of lead exposure. The effect of occupational lead exposure on neurocognitive performance is inconclusive. Therefore, we conducted an observational study to examine the difference in simple reaction time between lead-exposed batik workers and non-exposed referents. (2) Methods: This cross-sectional study was conducted in seven batik enterprises in Lendah District, Indonesia, excluding workers with medical conditions impairing reaction time. Simple reaction time tests were conducted using an online tool. Two-way model ANCOVAs examined interactions between gender and job types on the mean differences in reaction time. (3) Results: After controlling for age and body mass index, we observed longer reaction times among lead-exposed batik workers than non-exposed referents with an adjusted mean difference of 0.19 (95% CI: 0.016-0.368) seconds. A more prominent detrimental effect of lead exposure on reaction time among female workers than among male workers was observed. (4) Conclusions: Our results suggest that occupational lead exposure could contribute to longer reaction time, notably among female workers. Thus, occupational health and safety precautions are vital to protect batik workers and preserve their important contributions to cultural heritage.


Subject(s)
Lead/toxicity , Occupational Diseases , Occupational Exposure , Occupational Health , Cross-Sectional Studies , Female , Humans , Male , Occupational Exposure/statistics & numerical data , Reaction Time
7.
Sci Rep ; 9(1): 15407, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31659212

ABSTRACT

A novel, highly sensitive and selective safrole sensor has been developed using quartz crystal microbalance (QCM) coated with polyvinyl acetate (PVAc) nanofibers. The nanofibers were collected on the QCM sensing surface using an electrospinning method with an average diameter ranging from 612 nm to 698 nm and relatively high Q-factors (rigid coating). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the PVAc nanofiber surface morphology, confirming its high surface area and roughness, which are beneficial in improving the sensor sensitivity compared to its thin-film counterpart. The as-spun PVAc nanofiber sensor could demonstrate a safrole limit of detection (LOD) of down to 0.7 ppm with a response time of 171 s and a sensitivity of 1.866 Hz/ppm. It also showed good reproducibility, rapid response time, and excellent recovery. Moreover, cross-interference of the QCM sensor response to non-target gases was investigated, yielding very low cross-sensitivity and high selectivity of the safrole sensor. Owing to its high robustness and low fabrication cost, this proposed sensing device is expected to be a promising alternative to classical instrumental analytical methods for monitoring safrole-based drug precursors.

8.
Sensors (Basel) ; 18(4)2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642565

ABSTRACT

Safrole is the main precursor for producing the amphetamine-type stimulant (ATS) drug, N-methyl-3,4-methylenedioxyamphetamine (MDMA), also known as ecstasy. We devise a polyacrylonitrile (PAN) nanofiber-based quartz crystal microbalance (QCM) for detecting safrole. The PAN nanofibers were fabricated by direct electrospinning to modify the QCM chips. The PAN nanofiber on the QCM chips has a diameter of 240 ± 10 nm. The sensing of safrole by QCM modified with PAN nanofiber shows good reversibility and an apparent sensitivity of 4.6 Hz·L/mg. The proposed method is simple, inexpensive, and convenient for detecting safrole, and can be an alternative to conventional instrumental analytical methods for general volatile compounds.


Subject(s)
Nanofibers , Acrylic Resins , Quartz , Quartz Crystal Microbalance Techniques , Safrole
9.
Int J Biol Macromol ; 82: 48-53, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26459169

ABSTRACT

Alginate based biopolymer with improved physical and chemical properties after esterification using polyvinyl alcohol (PVA) has been studied for possible application as a hemodialysis membrane. The alginic acid to vinyl alcohol molar ratio was predetermined at 0, 0.1, 0.5 and 1. Mechanical strength, hydrophilicity and Ca(2+) adsorption of the membrane before and after modification were evaluated. The obtained PVA-alginate (PVA-Alg) ester membrane was also confirmed using FTIR and SEM. It shows that the PVA-Alg membrane tensile strength is higher than that of native alginate. The water contact angle of the membrane was found to be around 33-50°. The Ca(2+) adsorption capacity tends to decrease with the increase in molar ratio. Furthermore, the modified PVA-Alg ester membrane achieves better protein adsorption and platelet adhesion than the unmodified one. It also exhibits a dialysis performance of 47.1-50.0% for clearance of urea and 42.2-44.6% for clearance of creatinine, respectively. It is expected that this PVA-Alg ester may challenge cellulose acetate for potential application as hemodialysis membranes.


Subject(s)
Alginates/chemistry , Membranes, Artificial , Polyvinyl Alcohol/chemistry , Renal Dialysis , Adsorption , Biocompatible Materials/chemistry , Blood Proteins/chemistry , Calcium/chemistry , Creatinine/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Materials Testing , Spectroscopy, Fourier Transform Infrared , Tensile Strength , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...