Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Eur J Pharmacol ; 528(1-3): 7-16, 2005 Dec 28.
Article in English | MEDLINE | ID: mdl-16324696

ABSTRACT

The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but not much Y295W), were crucial for the high affinity of MEN16132. In conclusion, MEN16132 is a new, potent, and selective nonpeptide bradykinin B2 receptor antagonist.


Subject(s)
Bradykinin B2 Receptor Antagonists , Ornithine/analogs & derivatives , Sulfonamides/pharmacology , Animals , Binding, Competitive , Bradykinin/analogs & derivatives , Bradykinin/metabolism , Bradykinin/pharmacology , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Guinea Pigs , Humans , In Vitro Techniques , Inositol Phosphates/metabolism , Middle Aged , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Ornithine/metabolism , Ornithine/pharmacology , Point Mutation , Quinolines/pharmacology , Receptor, Bradykinin B2/genetics , Receptor, Bradykinin B2/metabolism , Sulfonamides/metabolism , Transfection
2.
Eur J Pharmacol ; 516(2): 104-11, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15925360

ABSTRACT

The pharmacological outline of a novel and original antagonist at the human tachykinin NK2 receptor is presented, namely MEN13510 (N-N'-bis-[2-(1H-indol-3-yl)-ethyl]-N,N'-bis-(3-thiomorpholin-4-yl-propyl)-phthalamide). MEN13510 retained nanomolar affinity for the human tachykinin NK2 receptor (Ki 6.4 nM), and micromolar affinity for the human tachykinin NK1 and NK3 receptors. A competitive antagonism is indicated by the Schild analysis (pK(B) 7.8, slope -0.94) of concentration-response curves of NKA induced inositolphosphates accumulation in Chinese hamster ovary (CHO) cells expressing the human NK2 receptor in the presence of MEN13510 (30-300 nM concentration range). The MEN13510 interaction with the human NK2 receptor was evaluated by means of heterologous inhibition binding experiments, by using agonist and antagonist radioligands ([125I]NKA, [3H]nepadutant, [3H]saredutant) at a series of mutant receptors having single aminoacidic substitutions of residues located in transmembrane (TM) segments 3, 4, 5, 6, and 7. MEN13510 affinity was not affected by the mutations in TM 3 and 4 (Q109A, F112A, T171A, C167G), and it was reduced by 10-fold at the I202F mutant, but not at the Y206A (TM4). Amongst the investigated mutants bearing the mutated residues in TM6 (F270A, Y266F, W263A) only F270A decreased the MEN13510 affinity by 7-fold. Even mutations in TM7 did reduce MEN13510 affinity by 32-fold (Y289T, but not Y289F) and 13-fold (F293A). Studied mutations represent the human tachykinin NK2 receptor discriminants involved in the binding of previously reported peptidic and nonpeptidic antagonists, against which results obtained with MEN13510 are compared. Results indicate that the binding site of this antagonist is, at least in part, overlapping to that described for NKA or saredutant. Finally we show that MEN13510 retains nanomolar affinity for the recently discovered splice variant of the human tachykinin NK2 receptor, namely beta isoform, as it has been described for the nonpeptide antagonist saredutant.


Subject(s)
Indoles/pharmacology , Morpholines/pharmacology , Phthalic Acids/pharmacology , Receptors, Neurokinin-2/antagonists & inhibitors , Animals , Benzamides/metabolism , Binding, Competitive/drug effects , CHO Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Gene Expression , Humans , Indoles/chemistry , Indoles/metabolism , Inositol Phosphates/metabolism , Iodine Radioisotopes , Ligands , Morpholines/chemistry , Morpholines/metabolism , Mutation, Missense , Neurokinin A/metabolism , Neurokinin A/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/metabolism , Piperidines/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Radioligand Assay , Receptors, Neurokinin-2/genetics , Receptors, Neurokinin-2/metabolism , Substance P/metabolism , Tritium
3.
Br J Pharmacol ; 143(8): 938-41, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15545289

ABSTRACT

The aim of the present report was to investigate the ligand selectivity of the human orphan G-protein-coupled receptor GPR100 (hGPR100), recently identified as a novel bradykinin (BK) receptor, as compared with that of the human B(2) receptor (hB(2)R) stably transfected in Chinese hamster ovary cells. BK was able to inhibit the cAMP production induced by forskolin with a potency 100-fold lower at the hGPR100 (pEC(50) = 6.6) than that measured at the hB(2)R (pEC(50) = 8.6). Both effects were inhibited by the B(2) receptor antagonist Icatibant (1 microM). The nonpeptide B(2) receptor agonist FR190997 (8-[2,6-dichloro-3-[N-methylcarbamoyl)cinnamidoacetyl]-N-methylamino]benzyloxy]-2-methyl-4-(2-pyridylmethoxy)quinoline) did inhibit the forskolin-induced cAMP production (pEC(50) = 7.7) at the hB(2)R, whereas it was not able to exert any effect at the hGPR100. The human insulin-like peptide relaxin 3 did inhibit the cAMP production at the hGPR100 (pEC(50) = 7.3) at a greater extent than BK, and was devoid of any effect at the hB(2)R. FR190997 and relaxin 3 responses at the hB(2)R and hGPR100, respectively, were not inhibited by Icatibant (1 microM). These data indicate FR190997 and relaxin 3 as selective agonists for hB(2)R and hGPR100, respectively, and support the concept that different agonists may specifically bias the conformational states of a receptor to result in a final common G protein coupling, which is differentially recognized by antagonists.


Subject(s)
Receptor, Bradykinin B2/metabolism , Receptors, Bradykinin/physiology , Signal Transduction/physiology , Animals , Bradykinin/metabolism , Bradykinin/pharmacology , CHO Cells , Cricetinae , Dose-Response Relationship, Drug , Humans , Signal Transduction/drug effects
4.
Eur J Pharmacol ; 499(3): 229-38, 2004 Sep 24.
Article in English | MEDLINE | ID: mdl-15381044

ABSTRACT

In the present study, we have investigated, by binding and functional experiments, the pharmacological profile of a new human tachykinin NK(2) receptor splice variant named beta isoform. Neurokinin A, nepadutant, SR48968 [(S)-N-methyl-N[4-(4-acetylamino-4-phenyl piperidino)-2-(3,4-dichlorophenyl) butyl]benzamide] and substance P have been tested for binding on the receptor expressed in whole CHO transfected cells. Only SR48968 binds, but with an affinity about sixfold lower in respect to the alpha isoform. Moreover, neurokinin A was unable to inhibit the [(3)H]SR48968 binding to the beta isoform up to microM concentrations. In cells expressing the human tachykinin NK(2) receptor beta isoform, contrary to those expressing the alpha isoform, natural or selective tachykinin receptor agonists (1 microM) were unable to produce a significant activation of inositol phosphate (IP) production or increase of intracellular calcium concentration [Ca(2+)](i). The recently discovered tachykinins, endokinins C and D, did not activate IP production or [Ca(2+)](i) increase in cells expressing the alpha or beta isoform of the human tachykinin NK(2) receptor. The present data indicate that the human tachykinin NK(2) receptor beta isoform is poorly or not expressed on the cell membrane surface and that it may possibly act as a regulator of tachykinin NK(2) receptor function. We cannot exclude the possibility that this receptor could interact with other presently unknown ligands.


Subject(s)
Alternative Splicing , Receptors, Neurokinin-2/metabolism , Amino Acid Sequence , Animals , Benzamides/metabolism , Binding, Competitive/drug effects , CHO Cells , Calcium/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cricetinae , Cricetulus , Humans , Inositol Phosphates/biosynthesis , Intracellular Space/drug effects , Intracellular Space/metabolism , Iodine Radioisotopes , Molecular Sequence Data , Neurokinin A/metabolism , Neurokinin A/pharmacology , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Piperidines/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Radioligand Assay , Receptors, Neurokinin-2/agonists , Receptors, Neurokinin-2/genetics , Sequence Homology, Amino Acid , Substance P/metabolism , Substance P/pharmacology , Transfection , Tritium
5.
Eur J Pharmacol ; 491(2-3): 121-5, 2004 May 03.
Article in English | MEDLINE | ID: mdl-15140628

ABSTRACT

The pharmacology of peptide and non-peptide bradykinin B2 receptor ligands was evaluated in the inositol phosphate (IP) production assay in CHO cells expressing the human bradykinin B2 receptor. The effect of single and double alanine mutation of D266 and D284 residues at the human bradykinin B2 receptor was evaluated on the agonist profile of bradykinin (H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH) and the synthetic agonist FR190997 (8-[2,6-dichloro-3-[N-methylcarbamoyl)cinnamidoacetyl]-N-methylamino]benzyloxy]-2-methyl-4-(2-pyridylmethoxy)quinoline). Bradykinin potency (EC50 0.5 nM at the wild-type receptor) was reduced by 16-fold at D266A and D284A mutants and by 2300-fold at the D266A/D284A double mutant. None of the mutants affected the potency or the efficacy of FR190997. Peptide antagonists, Icatibant (H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-Dtic-Oic-Arg-OH) and MEN11270 (H-DArg-Arg-Pro-Hyp-Gly-Thi-c(Dab-DTic-Oic-Arg)c(7gamma-10alpha)) (100 nM) similarly antagonized the concentration-response curve to bradykinin or FR190997 (pA2 values 8.5 and 8.4 versus bradykinin and 8.2 and 8.4 versus FR190997) at the wild-type receptor. Non-peptide antagonists FR173657 ((E)-3-(6-acetamido-3-pyridyl)-N-[N-[2,4-dichloro-3-[(2-methyl-8-quinolinyl) oxymethyl]phenyl]-N-methylaminocarbonyl methyl]acrylamide) and LF16-0687 (1-[[2,4-dichloro-3-[(2,4-dimethylquinolin-8-yl)oxy] methyl]-phenyl]sulfonyl]-N-[3-[[4-(aminoiminomethyl)-phenyl]carbonylamino]propyl]-(S)-pyrrolidine carboxamide) (100 nM) showed an equivalent potency values in blocking the IP production induced by bradykinin or FR190997 (pA2 values 8.7 and 8.8 versus bradykinin and 8.8 and 8.6 versus FR190997). Whilst the antagonist potency of FR173657 and LF16-0687 was not affected by D266A/D284A double mutation (IP production induced by the synthetic agonist), that of Icatibant and MEN11270 was reduced by 50- and 200-fold. The antagonist potency of [Ala1]-Icatibant and [Ala2]-Icatibant (pA2 values at wild-type 7.7 and 6.4) was significantly less reduced (20-fold and 13-fold, respectively) by the D266A/D284A double mutation. Our results highlight a crucial role for two aspartic residues, D266 and D284, located at the top of transmembrane segments 6 and 7, in the high-affinity interaction of peptide antagonists with the human bradykinin B2 receptor. An interaction of these receptor residues with the N-terminal basic residues of Icatibant is hypothesized.


Subject(s)
Aspartic Acid/metabolism , Bradykinin/analogs & derivatives , Bradykinin/metabolism , Peptide Fragments/metabolism , Receptor, Bradykinin B2/metabolism , Animals , Bradykinin B2 Receptor Antagonists , Cricetinae , Dose-Response Relationship, Drug , Humans , Peptide Fragments/pharmacology , Quinolines/metabolism , Quinolines/pharmacology , Receptor, Bradykinin B2/agonists
6.
Eur J Pharmacol ; 488(1-3): 61-9, 2004 Mar 19.
Article in English | MEDLINE | ID: mdl-15044036

ABSTRACT

The pharmacological profile of novel antagonists endowed with high affinity for the human tachykinin NK(2) receptor is presented. MEN13918 (Ngamma[Nalpha[Nalpha(benzo[b]thiophen-2-yl)carbonyl]-1-aminocyclohexan-1-carboxy]-d-phenylalanyl]-3-cis-aminocyclohexan-1-carboxylic-acid-N-(1S,2R)-2-aminocyclohexyl)amide trifluoroacetate salt) and MEN14268 (Nalpha[Nalpha(benzo[b]thiophen-2-yl)carbonyl)-1-aminocyclopentane-1-carboxyl]-d-phenylalanine-N-[3(morpholin-4-yl)propyl]amide trifluoroacetate salt) were more potent in blocking neurokinin A (NKA, His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH(2)) induced contraction in human, which induced greater contraction in human (pK(B) 9.1 and 8.3) than rat (pK(B) 6.8 and <6) urinary bladder smooth muscle preparation in vitro. In agreement with functional data, in membrane preparations of CHO cells stably expressing the human NK(2) receptors, both MEN13918 and MEN14268 potently inhibited the binding of agonist ([(125)I]NKA, K(i) 0.2 and 2.8 nM) and antagonist ([(3)H]nepadutant, K(i) 0.1 and 2.2 nM, [(3)H]SR48968 K(i) 0.4 and 6.9 nM) radioligands. Using site-directed mutagenesis and radioligands binding we identified six residues in the transmembrane (TM) helices that are critical determinants for the studied antagonists affinity. To visualize these experimental findings, we constructed a homology model based on the X-ray crystal structure of bovine rhodopsin and suggested a possible binding mode of these newly discovered antagonist ligands to the human tackykinin NK(2) receptor. Both MEN13918 and MEN14268 bind amongst TM4 (Cys167Gly), TM5 (Tyr206Ala), TM6 (Tyr266Ala, Phe270Ala), and TM7 (Tyr289Phe, Tyr289Thr). MEN13918 and MEN14268 diverging binding profile at Y289 mutations in TM7 (Tyr289Phe, Tyr289Thr) suggests a relation of their different chemical moieties with this residue. Moreover, the different influence on binding of these two ligands by mutations located deep along the inner side of TM6 (Phe270Ala, Tyr266Ala, Trp263Ala) indicates a nonequivalent positioning, although occupying the same binding crevice. Furthermore, binding data indicate the Ile202Phe mutation, which mimics the wild-type rat NK(2) receptor sequence, as a species selectivity determinant. In summary, data with mutant receptors describe, for these new tachykinin NK(2) receptor antagonists, a binding site which is partially overlapping either with that of the cyclized peptide antagonist nepadutant (cyclo-[[Asn(beta-d-GlcNAc)-Asp-Trp-Phe-Dpr-Leu]cyclo(2beta-5beta)] or the nonpeptide antagonist SR48968 ((S)-N-methyl-N[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzamide).


Subject(s)
Mutagenesis, Site-Directed/genetics , Receptors, Neurokinin-2/genetics , Animals , Benzamides/pharmacology , Binding Sites/drug effects , Binding, Competitive/drug effects , CHO Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Cricetinae , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Guinea Pigs , In Vitro Techniques , Ligands , Male , Models, Molecular , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Peptides, Cyclic/pharmacology , Piperidines/pharmacology , Radioligand Assay , Rats , Receptors, Neurokinin-2/drug effects
7.
Biochem Pharmacol ; 67(4): 601-9, 2004 Feb 15.
Article in English | MEDLINE | ID: mdl-14757160

ABSTRACT

Combining site-directed mutagenesis with information obtained from molecular modelling of the bradykinin (BK) human B2 receptor (hB2R) as derived from the bovine rhodopsin crystal structure [Science 289 (2000) 739], we previously defined a putative binding mode for the non-peptide B2 receptor antagonists, FR173657 and LF16-0687 [Can J Physiol Pharmacol 80 (2002) 303]. The present work is aimed to define the specific role of the quinoline moiety in the pharmacophore of these non-peptide antagonists. The effect of the mutations I110A, L114A (TM, transmembrane 3), W256A (TM6), F292A, Y295A and Y295F (TM7) was evaluated. None of the mutations affected the binding interaction of peptide ligands: the agonist BK and the peptide antagonist MEN 11270. The affinities in competing for [3H]-BK binding and in blocking the BK-induced IP production by the non-peptide antagonists LF16-0687 and FR173657 at the wild type and mutant receptors were analysed. While the affinities of LF16-0687 and FR173657 were crucially decreased at the I110A, Y295A, and Y295F mutants, the W256A mutation affected the affinity of the LF16-0687 only. The important contribution of the quinoline moiety was shown by the inability of an analogue of LF16-0687, lacking this moiety, to affect BK binding at the wild type receptor. On the other hand, the benzamidine group did not interact with mutated residues, since LF16-0687 analogues without this group or with an oxidated benzamidine displayed pairwise loss of affinity on wild type and mutated receptors. Further differences between FR173657 and LF16-0687 were highlighted at the I110 and Y295 mutants when comparing binding (pK(i)) and functional antagonist (pKB) affinity. First, the I110A mutation similarly impaired their binding affinity (250-fold), but at a less extent the antagonist potency of FR173657 only. Second, both the hydroxyl and the phenyl moieties of the Y295 residue had a specific role in the LF16-0687 interaction with the receptor, as demonstrated at the Y295F and Y295A mutants, respectively, but not in that of FR173657. Present data identify a receptor binding pocket comprised among TM3, 6, and 7, which concerns the interaction of the non-peptide antagonists FR173657 and LF16-0687, but not that of the peptide agonist or antagonist. Results indicate the quinoline group as the involved pharmacophoric element, and that the studied residues are differently involved in the interaction. The analysis performed by means of the GRID software led us to propose different spatial orientations of the quinoline moieties and partially overlapping binding pockets for the two ligands: that of LF16-0687 is located in the lipophilic environment amongst I110 (TM3), W256 (TM6), and Y295 (TM7) residues, whereas that of FR173657 lies essentially between I110 and Y295.


Subject(s)
Bradykinin B2 Receptor Antagonists , Oligopeptides/pharmacology , Peptides, Cyclic/pharmacology , Quinolines/pharmacology , Receptor, Bradykinin B2/metabolism , Animals , Binding, Competitive , CHO Cells , Cricetinae , Female , Humans , Models, Molecular , Mutagenesis, Site-Directed , Quinolines/chemistry , Receptor, Bradykinin B2/genetics
8.
Br J Pharmacol ; 140(3): 500-6, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12970081

ABSTRACT

Binding affinity at the [3H]-BK binding site and activity as inositol phosphate (IP) production by the peptide bradykinin (BK) and the nonpeptide FR190997 were studied at wild-type or point-mutated human B2 receptors (hB2R) expressed in CHO cells. The effect of the following mutations were analyzed: E47A (TM1), W86A and T89A (TM2), I110A, L114A and S117A (TM3), T158A, M165T and L166F (TM4), T197A and S211A (TM5), F252A, W256A and F259A (TM6), S291A, F292A, Y295A and Y295F (TM7), and the double mutation W256A/Y295F. As the wild-type receptor-binding affinity of FR190997 was 40-fold lower than BK, whereas their agonist potency was comparable, both agonists produced similar maximal effects (Emax). Mutations were evaluated as affecting the affinity and/or efficacy of FR190997 compared with BK. Two mutations were found to impair the agonist affinity of both agonists drastically: W86A and F259A. BK agonist affinity (pEC50) was reduced by 1400- and 150-fold, and that of FR190997 was reduced by 400- and 25-fold, at the W86A and F259A mutant B2 receptors, respectively. Contrary to BK, the affinity of FR190997 was selectively decreased at I110A, Y295A, and Y295F mutants (>103-fold), and a different efficacy was measured at the Y295 mutants, FR190997 being devoid of the capability to trigger IP production at Y295A mutant. L114A, F252A, and W256A selectively impaired the efficacy of FR190997, whereas its binding affinity was not affected. As a consequence, FR190997 behaved as a high-affinity antagonist in blocking the IP production induced by BK. The lack of capability of FR190997 to activate or to bind the double mutant W256A/Y295F suggests that these residues are part of the same binding site, which is also important for receptor activation by the nonpeptide ligand. Overall, by means of mutational analysis, we indicate an hB2R recognition site for the nonpeptide agonist FR190997 (between TM3, 6, and 7), different from that of BK, and show that in the same binding crevice some mutations (L114, W256, and F252) are selectively responsible for the agonist properties of only FR190997.


Subject(s)
Bradykinin/metabolism , Quinolines/metabolism , Receptor, Bradykinin B2/genetics , Receptor, Bradykinin B2/metabolism , Animals , CHO Cells , Cricetinae , DNA Mutational Analysis/methods , Dose-Response Relationship, Drug , Humans , Mutation , Protein Binding/physiology , Receptor, Bradykinin B2/agonists
9.
Mol Biotechnol ; 23(3): 189-202, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12665690

ABSTRACT

We describe an expression system for high-yield production of recombinant soluble human FasL (rsh- FasL) in CHO cells. After one round of selection for gene amplification, cell lines producing rsh-FasL up to 60 microg/L x 10(6) cells in 24 h were obtained. Cell lines were grown in protein-free medium as suspension cultures. The protein secreted into growth medium was purified by immunoaffinity. The rsh-FasL thus obtained was further fractionated by gel filtration and a form of approx 140 kDa was isolated and characterized. Mass spectral analysis yielded a main peak of 28,321.15 Da, while, although to a lesser extent, dimeric and trimeric forms were also detected according to the described oligomerized state of native FasL. Our procedure permits consistent production of biologically active rsh-FasL as shown in tests on FasL-sensitive cells and in in vitro binding assays.


Subject(s)
CHO Cells/metabolism , Gene Expression Regulation , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Amino Acid Sequence , Animals , CHO Cells/physiology , Cells, Cultured , Cricetinae , Fas Ligand Protein , Gene Amplification , Humans , Ligands , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/isolation & purification , Molecular Sequence Data , Mutagenesis, Site-Directed , Quality Control , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Transfection
10.
Peptides ; 23(8): 1457-63, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12182947

ABSTRACT

The ligand receptor interactions involving the C-terminal moiety of kinin B(2) receptor antagonists Icatibant (H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-Dtic-Oic-Arg-OH), MEN 11270 (H-DArg-Arg-Pro-Hyp-Gly-Thi-c(Dab-Dtic-Oic-Arg)c(7gamma-10alpha)) and a series of analogs modified in position 10 were investigated by radioligand-binding experiments at the wild type (WT) and at the Ser(111)Ala and Ser(111)Lys mutant human kinin B(2) receptors. Icatibant and [Lys(10)]-Icatibant maintained the same high affinity towards the three receptors. For Icatibant-NH(2), [Ala(10)]-Icatibant, MEN 11270 and [Glu(10)]-MEN 11270, the changes in affinity at the WT and Ser(111)Lys receptors indicated that the presence of a net positive or negative charge at the C-terminal moiety of these peptides caused a decrease in affinity to the WT receptor and that Ser(111) residue is in proximity of the side chain of residue 10. The changes in affinity measured with [desArg(10)]-Icatibant and [desArg(10)]-Icatibant-NH(2), moreover, confirmed that a C-terminal charge compensation between the positive charge of Arg(10) side chain and the C-terminal free carboxylic function favours a high affinity interaction.


Subject(s)
Bradykinin Receptor Antagonists , Bradykinin/analogs & derivatives , Bradykinin/metabolism , Animals , CHO Cells , Cricetinae , Humans , Mutagenesis, Site-Directed , Receptor, Bradykinin B2 , Receptors, Bradykinin/genetics , Receptors, Bradykinin/metabolism , Structure-Activity Relationship
11.
J Med Chem ; 45(16): 3418-29, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-12139452

ABSTRACT

A new series of monocyclic pseudopeptidic tachykinin NK-2 receptor antagonists has been derived from nepadutant with the help of site-directed mutagenesis studies and QSAR models. MEN11558 is the lead compound which is evaluated on a series of 13 new human tachykinin NK-2 receptor mutants (Tyr107Ala, Gln109Ala, Asn110Ala, Phe112Ala, Ser164Phe, Cys167Gly, Phe168Ala, Tyr169Ala, Ile202Phe, Trp263Ala, Tyr269Phe, Tyr269Ala, and Phe293Ala) and 8 mutants on which data from nepadutant were already available (Gln166Ala, Ser170Ala, Thr171Ala, His198Ala, Tyr206Phe, Tyr266Phe, Tyr289Phe, and Tyr289Thr). The results show that the two compounds share most of their binding sites, in agreement with their hypothesized binding modes. This allows us to transfer the structural knowledge we already had for nepadutant to the new series of compounds. At the same time, a sound QSAR model is developed to assist the prioritization of new chemical syntheses. The result is the discovery of receptor antagonists with a higher affinity than nepadutant for the hNK-2 receptor.


Subject(s)
Peptides, Cyclic/chemistry , Receptors, Neurokinin-2/antagonists & inhibitors , Receptors, Neurokinin-2/chemistry , Tachykinins/metabolism , Amino Acid Sequence , Binding Sites , Binding, Competitive , Humans , In Vitro Techniques , Ligands , Models, Molecular , Molecular Conformation , Molecular Mimicry , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Quantitative Structure-Activity Relationship , Radioligand Assay , Receptors, Neurokinin-2/metabolism
12.
Can J Physiol Pharmacol ; 80(4): 303-9, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12025965

ABSTRACT

FR173657, LF16,0335, and LF16,0687 are nonpeptide antagonists, endowed with high affinity and selectivity for the human kinin B2 receptor. The kinin B2 receptor belongs to the family of G-protein-coupled receptors with seven transmembrane (TM) helices. In the present study, we aimed, through computer-assisted modeling and mutagenesis, to identify residues in the human B2 receptor (hB2R) amino acid sequence that are involved in nonpeptide antagonist binding in order to build up experimental data as a first step towards a molecular model of nonpeptide ligands binding site. Fourteen amino acid residues within the TM segments were mutated to alanine. The wild type and mutant receptors were stably expressed in Chinese hamster ovary (dhfr-) cells and tested for their ability to bind agonist ([3H]bradykinin) and peptide antagonist ([3H]MENI 1270) radioligands. The affinity of nonpeptide ligands was determined by heterologous competition experiments using the above radioligands. We found that some mutations in TM2 (W86A) and TM7 (Y295A, N297A) impair the binding affinity of the three nonpeptide antagonists. On the other hand, some mutated residues in TM3 (S1 17A) and TM6 (W256A) reduce the affinity of LF16,0335 and LF16,0687 only. Results are discussed in order to build up a hypothesis for the likely different interactions of various nonpeptide ligands with the B2 receptor.


Subject(s)
Bradykinin Receptor Antagonists , Point Mutation , Receptors, Bradykinin/genetics , Animals , Binding, Competitive/genetics , Bradykinin/metabolism , CHO Cells , Cricetinae , DNA Mutational Analysis/methods , Humans , Ligands , Models, Molecular , Protein Binding/genetics , Quinolines/metabolism , Quinolines/pharmacology , Receptor, Bradykinin B2 , Receptors, Bradykinin/chemistry , Receptors, Bradykinin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...