Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dent J (Basel) ; 8(3)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630223

ABSTRACT

Invasive cervical resorption (ICR) is a localized, subepithelial, supra-osseous resorptive process of the tooth. Although there are several predisposing factors associated with ICR, its etiology and pathogenesis are poorly understood. The damage to the protective layer on the external root surface appears to allow for the attachment of clastic cells and initiate the resorptive process, which is confined by the inner protective pericanalar resorption-resistant sheet surrounding the root canal space. The use of cone-beam computed tomography (CBCT) is recommended for the diagnosis and assessment of a resorptive lesion. Based on the thorough evaluation of the size and location of the ICR lesion using CBCT, surgical or nonsurgical treatment can be chosen to address the source of the resorption. This review discusses the current status of knowledge regarding the biology of ICR lesions as well as their external or internal treatment using hydraulic calcium silicate-based materials. Future clinical outcome studies are necessary to evaluate the impact of hydraulic calcium silicate-based materials on the healing of ICR lesions.

2.
PLoS One ; 8(10): e78236, 2013.
Article in English | MEDLINE | ID: mdl-24205170

ABSTRACT

Accumulating evidence suggests that the adult murine hypothalamus, a control site of several fundamental homeostatic processes, has neurogenic capacity. Correspondingly, the adult hypothalamus exhibits considerable cell proliferation that is ongoing even in the absence of external stimuli, and some of the newborn cells have been shown to mature into cells that express neuronal fate markers. However, the identity and characteristics of proliferating cells within the hypothalamic parenchyma have yet to be thoroughly investigated. Here we show that a subset of NG2-glia distributed throughout the mediobasal hypothalamus are proliferative and express the stem cell marker Sox2. We tracked the constitutive differentiation of hypothalamic NG2-glia by employing genetic fate mapping based on inducible Cre recombinase expression under the control of the NG2 promoter, demonstrating that adult hypothalamic NG2-glia give rise to substantial numbers of APC+ oligodendrocytes and a smaller population of HuC/D+ or NeuN+ neurons. Labelling with the cell proliferation marker BrdU confirmed that some NG2-derived neurons have proliferated shortly before differentiation. Furthermore, patch-clamp electrophysiology revealed that some NG2-derived cells display an immature neuronal phenotype and appear to receive synaptic input indicative of their electrical integration in local hypothalamic circuits. Together, our studies show that hypothalamic NG2-glia are able to take on neuronal fates and mature into functional neurons, indicating that NG2-glia contribute to the neurogenic capacity of the adult hypothalamus.


Subject(s)
Antigens/metabolism , Hypothalamus/metabolism , Neuroglia/metabolism , Neurons/metabolism , Proteoglycans/metabolism , Animals , Antigens/genetics , Biomarkers/metabolism , Bromodeoxyuridine/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Integrases/genetics , Integrases/metabolism , Male , Mice , Neural Stem Cells/metabolism , Oligodendroglia/metabolism , Promoter Regions, Genetic/genetics , Proteoglycans/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...