Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 352, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172530

ABSTRACT

The Colorado potato beetle is one of the most devastating potato pests in the world. However, its viral pathogens, which might have potential in pest control, have remained unexplored. With high-throughput sequencing of Colorado potato beetle samples derived from prepupal larvae which died from an unknown infection, we have identified two previously unknown RNA viruses and assembled their nearly complete genome sequences. The subsequent genetic and phylogenetic analysis demonstrated that the viruses, tentatively named Leptinotarsa iflavirus 1 and Leptinotarsa solinvi-like virus 1, are the novel representatives of the Iflaviridae and Solinviviridae families, respectively. To the best of our knowledge, these are the first sequencing-confirmed insect viruses derived from Colorado potato beetle samples. We propose that Leptinotarsa iflavirus 1 may be associated with a lethal disease in the Colorado potato beetle.


Subject(s)
Coleoptera , Insect Viruses , Solanum tuberosum , Humans , Animals , Coleoptera/genetics , Solanum tuberosum/genetics , Phylogeny , Larva/genetics
2.
Arch Insect Biochem Physiol ; 114(4): e22053, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37695720

ABSTRACT

Infection of intestinal tissues with Wolbachia has been found in Habrobracon hebetor. There are not many studies on the relationship between Habrobracon and Wolbachia, and they focus predominantly on the sex index of an infected parasitoid, its fertility, and behavior. The actual role of Wolbachia in the biology of Habrobracon is not yet clear. The method of complete eradication of Wolbachia in the parasitoid was developed here, and effects of the endosymbiont on the host's digestive metabolism were compared between two lines of the parasitoid (Wolbachia-positive and Wolbachia-negative). In the gut of Wolbachia+ larvae, lipases' activity was higher almost twofold, and activities of acid proteases, esterases, and trehalase were 1.5-fold greater than those in the Wolbachia- line. Analyses of larval homogenates revealed that Wolbachia+ larvae accumulate significantly more lipids and have a lower amount of pyruvate as compared to Wolbachia- larvae. The presented results indicate significant effects of the intracellular symbiotic bacterium Wolbachia on the metabolism of H. hebetor larvae and on the activity of its digestive enzymes.


Subject(s)
Hymenoptera , Moths , Wasps , Wolbachia , Animals , Larva/metabolism , Wasps/metabolism , Rickettsiales , Moths/metabolism
3.
Mycotoxin Res ; 39(2): 135-149, 2023 May.
Article in English | MEDLINE | ID: mdl-37071305

ABSTRACT

Tenuazonic acid (TeA) is synthesized by phytopathogenic and opportunistic fungi and is detected in a broad range of foods. This natural compound is of interest in terms of toxicity to animals, but its mechanisms of action on insects are poorly understood. We administered TeA orally at different concentrations (0.2-5.0 mg/[gram of a growth medium]) to the model insect Galleria mellonella, with subsequent estimation of physiological, histological, and immunological parameters in different tissues (midgut, fat body, and hemolymph). Susceptibility of the TeA-treated larvae to pathogenic microorganisms Beauveria bassiana and Bacillus thuringiensis was also analyzed. The feeding of TeA to the larvae led to a substation delay of larval growth, apoptosis-like changes in midgut cells, and an increase in midgut bacterial load. A decrease in activities of detoxification enzymes and downregulation of genes Nox, lysozyme, and cecropin in the midgut and/or hemocoel tissues were detected. By contrast, genes gloverin, gallerimycin, and galiomycin and phenoloxidase activity proved to be upregulated in the studied tissues. Hemocyte density did not change under the influence of TeA. TeA administration increased susceptibility of the larvae to B. bassiana but diminished their susceptibility to B. thuringiensis. The results indicate that TeA disturbs wax moth gut physiology and immunity and also exerts a systemic action on this insect. Mechanisms underlying the observed changes in wax moth susceptibility to the pathogens are discussed.


Subject(s)
Moths , Tenuazonic Acid , Animals , Larva , Moths/genetics , Moths/microbiology , Fungi
4.
Viruses ; 15(2)2023 01 30.
Article in English | MEDLINE | ID: mdl-36851611

ABSTRACT

The Colorado potato beetle (CPB) is one of the most serious insect pests due to its high ecological plasticity and ability to rapidly develop resistance to insecticides. The use of biological insecticides based on viruses is a promising approach to control insect pests, but the information on viruses which infect leaf feeding beetles is scarce. We performed a metagenomic analysis of 297 CPB genomic and transcriptomic samples from the public National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) database. The reads that were not aligned to the reference genome were assembled with metaSPAdes, and 13314 selected contigs were analyzed with BLAST tools. The contigs and non-aligned reads were also analyzed with Kraken2 software. A total of 3137 virus-positive contigs were attributed to different viruses belonging to 6 types, 17 orders, and 32 families, matching over 97 viral species. The annotated sequences can be divided into several groups: those that are homologous to genetic sequences of insect viruses (Adintoviridae, Ascoviridae, Baculoviridae, Dicistroviridae, Chuviridae, Hytrosaviridae, Iflaviridae, Iridoviridae, Nimaviridae, Nudiviridae, Phasmaviridae, Picornaviridae, Polydnaviriformidae, Xinmoviridae etc.), plant viruses (Betaflexiviridae, Bromoviridae, Kitaviridae, Potyviridae), and endogenous retroviral elements (Retroviridae, Metaviridae). Additionally, the full-length genomes and near-full length genome sequences of several viruses were assembled. We also found sequences belonging to Bracoviriform viruses and, for the first time, experimentally validated the presence of bracoviral genetic fragments in the CPB genome. Our work represents the first attempt to discover the viral genetic material in CPB samples, and we hope that further studies will help to identify new viruses to extend the arsenal of biopesticides against CPB.


Subject(s)
Coleoptera , Dicistroviridae , Insecticides , Solanum tuberosum , Animals , Metagenome
5.
Insects ; 13(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555078

ABSTRACT

Different developmental stages of insects may be dissimilar in immunity functioning. Additionally, the stages often inhabit diverse environments with specific microbial communities. In the Colorado potato beetle, a strong increase in resistance to entomopathogenic fungi is observed during the intermolt period of last-instar larvae, but mechanisms of this change are insufficiently understood. We studied changes in the expression of immunity- and stress-related genes in the fat body and integument during this intermolt period by quantitative PCR. By the end of the instar, there was upregulation of transcription factors of Toll, IMD, and Jak-Stat pathways as well as genes encoding metalloprotease inhibitors, odorant-binding proteins, and heat shock proteins. Nonetheless, the expression of gene LdRBLk encoding ß-lectin did not change during this period. Most of the aforementioned genes were upregulated in response to Metarhizium robertsii topical infection. The expression alterations were more pronounced in recently molted larvae than in finishing feeding larvae and in the integument compared to the fat body. We believe that upregulation of immune-system- and stress-related genes at the end of the intermolt period is an adaptation caused by migration of larvae into soil, where the probability of encountering entomopathogenic fungi is high.

6.
J Fungi (Basel) ; 7(5)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066637

ABSTRACT

Ricin-B-lectins (RBLs) have been identified in many groups of organisms, including coleopterans insects, particularly the Colorado potato beetle Leptinotarsa decemlineata (LdRBLs). We hypothesized that one of these LdRBLs (LdRBLk) may be involved in the immune response to fungal infections. We performed a theoretical analysis of the structure of this protein. Additionally, the expression levels of the LdRBlk gene were measured in L. decemlineata in response to infections with the fungi Metarhizium robertsii and Beauveria bassiana. The expression levels of LdRBlk in the L. decemlineata cuticle and fat body were increased in response to both infections. The induction of LdRBlk expression was dependent on the susceptibility of larvae to the fungi. Upregulation of the LdRBlk gene was also observed in response to other stresses, particularly thermal burns. Elevation of LdRBlk expression was frequently observed to be correlated with the expression of the antimicrobial peptide attacin but was not correlated with hsp90 regulation. Commercially available ß-lectin of ricin from Ricinuscommunis was observed to inhibit the germination of conidia of the fungi. We suggest that LdRBLk is involved in antifungal immune responses in the Colorado potato beetle, either exerting fungicidal properties directly or acting as a modulator of the immune response.

7.
Sci Rep ; 11(1): 1299, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446848

ABSTRACT

Fungal infections and toxicoses caused by insecticides may alter microbial communities and immune responses in the insect gut. We investigated the effects of Metarhizium robertsii fungus and avermectins on the midgut physiology of Colorado potato beetle larvae. We analyzed changes in the bacterial community, immunity- and stress-related gene expression, reactive oxygen species (ROS) production, and detoxification enzyme activity in response to topical infection with the M. robertsii fungus, oral administration of avermectins, and a combination of the two treatments. Avermectin treatment led to a reduction in microbiota diversity and an enhancement in the abundance of enterobacteria, and these changes were followed by the downregulation of Stat and Hsp90, upregulation of transcription factors for the Toll and IMD pathways and activation of detoxification enzymes. Fungal infection also led to a decrease in microbiota diversity, although the changes in community structure were not significant, except for the enhancement of Serratia. Fungal infection decreased the production of ROS but did not affect the gene expression of the immune pathways. In the combined treatment, fungal infection inhibited the activation of detoxification enzymes and prevented the downregulation of the JAK-STAT pathway caused by avermectins. The results of this study suggest that fungal infection modulates physiological responses to avermectins and that fungal infection may increase avermectin toxicosis by blocking detoxification enzymes in the gut.


Subject(s)
Coleoptera/immunology , Insecticides/pharmacology , Intestines/immunology , Ivermectin/analogs & derivatives , Metarhizium/immunology , Signal Transduction/drug effects , Animals , Ivermectin/pharmacology , Signal Transduction/immunology
8.
Arch Insect Biochem Physiol ; 106(1): e21746, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33026670

ABSTRACT

The ability of Habrobracon brevicornis venom to elevate the nutritional suitability of a host by affecting the host larvae fat body condition was studied. To understand whether H. brevicornis crude venom impacts the host biochemical profile, the concentrations of total lipids and main sugars in the host larvae lymph were analyzed. All measurements were carried out during the first 3 days after envenomation. A significant increase in the lipid level was fixed only on the second day after envenomation. A significant increase in the total trehalose count was detected during all 3 days, while a significant increase in glucose concentration was noted only on the first day. Well-observed disruptions were fixed in thin and semithin sections of the G. mellonella larval fat body starting from the second day after envenomation. Significant increases in both phospholipase A2 and C enzyme activity as well as acid proteases were detected in the wax moth fat body after envenomation during all experimental times. At the same time, imbalances in the antioxidant system, including changes in the activities of superoxide dismutase, peroxidases, catalase, and glutathione-S-transferase, were detected. The reliable increase in the expression of the gene encoding Hsp70 was fixed both for 24 and 48 h after envenomation, while a reliable increase in the expression of the gene encoding inhibitor of apoptosis protein was detected only 24 h after wax moth larvae envenomation. Considering the absence of DNA fragmentation, the imbalance in the "ROS/antioxidants" system, and the increased activity of phospholipases and acid proteases in the fat body cells from envenomated wax moth larvae, we can hypothesize that the fat body disruption occurs in a necrotic manner. The results of the work expand the knowledge about the biochemical aspects of interaction between ectoparasitoids and their hosts.


Subject(s)
Host-Parasite Interactions , Moths/metabolism , Wasps/metabolism , Animals , Fat Body/metabolism , Hemolymph/metabolism , Hymenoptera , Larva/metabolism , Lepidoptera , Venoms/metabolism
9.
J Fungi (Basel) ; 6(3)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927906

ABSTRACT

Various insect bacterial associates are involved in pathogeneses caused by entomopathogenic fungi. The outcome of infection (fungal growth or decomposition) may depend on environmental factors such as temperature. The aim of this study was to analyze the bacterial communities and immune response of Galleria mellonella larvae injected with Cordyceps militaris and incubated at 15 °C and 25 °C. We examined changes in the bacterial CFUs, bacterial communities (Illumina MiSeq 16S rRNA gene sequencing) and expression of immune, apoptosis, ROS and stress-related genes (qPCR) in larval tissues in response to fungal infection at the mentioned temperatures. Increased survival of larvae after C. militaris injection was observed at 25 °C, although more frequent episodes of spontaneous bacteriosis were observed at this temperature compared to 15 °C. We revealed an increase in the abundance of enterococci and enterobacteria in the midgut and hemolymph in response to infection at 25 °C, which was not observed at 15 °C. Antifungal peptide genes showed the highest expression at 25 °C, while antibacterial peptides and inhibitor of apoptosis genes were strongly expressed at 15 °C. Cultivable bacteria significantly suppressed the growth of C. militaris. We suggest that fungi such as C. militaris may need low temperatures to avoid competition with host bacterial associates.

10.
Sci Rep ; 9(1): 4012, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850650

ABSTRACT

Gut bacteria influence the development of different pathologies caused by bacteria, fungi and parasitoids in insects. Wax moth larvae became more susceptible to fungal infections after envenomation by the ectoparasitoid Habrobracon hebetor. In addition, spontaneous bacterioses occurred more often in envenomated larvae. We analyzed alterations in the midgut microbiota and immunity of the wax moth in response to H. hebetor envenomation and topical fungal infection (Beauveria bassiana) alone or in combination using 16S rRNA sequencing, an analysis of cultivable bacteria and a qPCR analysis of immunity- and stress-related genes. Envenomation led to a predominance shift from enterococci to enterobacteria, an increase in CFUs and the upregulation of AMPs in wax moth midguts. Furthermore, mycosis nonsignificantly increased the abundance of enterobacteria and the expression of AMPs in the midgut. Combined treatment led to a significant increase in the abundance of Serratia and a greater upregulation of gloverin. The oral administration of predominant bacteria (Enterococcus faecalis, Enterobacter sp. and Serratia marcescens) to wax moth larvae synergistically increased fungal susceptibility. Thus, the activation of midgut immunity might prevent the bacterial decomposition of envenomated larvae, thus permitting the development of fungal infections. Moreover, changes in the midgut bacterial community may promote fungal killing.


Subject(s)
Gastrointestinal Microbiome/immunology , Lepidoptera/immunology , Lepidoptera/microbiology , Microbiota/immunology , Mycoses/immunology , Mycoses/microbiology , Animals , Bacteria/genetics , Bacterial Infections/immunology , Bacterial Infections/microbiology , Fungi/genetics , Larva/microbiology , Microbiota/genetics , Moths/microbiology , RNA, Ribosomal, 16S/genetics
11.
Mutat Res ; 685(1-2): 97-102, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20036675

ABSTRACT

Somatic mutations in mitochondrial DNA (mtDNA) are thought to play an important role in both aging and neurodegenerative diseases although their specific contributions remain a subject of intense debate. We analyzed somatic mutations in the mtDNA control regions in the liver of Wistar rats. The mutation rate was found to be high and increased with age from 5.3x10(-4) mutations per position to 4.48x10(-3) mutations per position at 3 and 12 months of age, respectively. The vast majority of nucleotide substitutions are transitions ( approximately 95%) with A:T>G:C transitions being the most frequent type of substitution (>50%). In 3-month-old Wistar rats, approximately 40% of somatic mutations in the control region of mtDNA are significantly consistent with the model of dislocation mutagenesis which is a signature of error-prone DNA synthesis by mtDNA polymerase gamma. The results are consistent with the previous hypothesis that normal intramitochondrial dNTP pool asymmetries, which have been shown to reduce the fidelity of mtDNA polymerase gamma, substantially contribute to somatic mutagenesis of the rat mtDNA.


Subject(s)
Aging , DNA, Mitochondrial , Mitochondria, Liver/genetics , Mutation , Animals , Base Sequence , Male , Molecular Sequence Data , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...