Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38544108

ABSTRACT

Virtual testing and validation are building blocks in the development of autonomous systems, in particular autonomous driving. Perception sensor models gained more attention to cover the entire tool chain of the sense-plan-act cycle, in a realistic test setup. In the literature or state-of-the-art software tools various kinds of lidar sensor models are available. We present a point cloud lidar sensor model, based on ray tracing, developed for a modular software architecture, which can be used stand-alone. The model is highly parametrizable and designed as a toolbox to simulate different kinds of lidar sensors. It is linked to an infrared material database to incorporate physical sensor effects introduced by the ray-surface interaction. The maximum detectable range depends on the material reflectivity, which can be covered with this approach. The angular dependence and maximum range for different Lambertian target materials are studied. Point clouds from a scene in an urban street environment are compared for different sensor parameters.

2.
Data Brief ; 48: 109031, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36969970

ABSTRACT

The main objective of this article is to provide angle-dependent spectral reflectance measurements of various materials in the near infrared spectrum. In contrast to already existing reflectance libraries, e.g., NASA ECOSTRESS and Aster reflectance libraries, which consider only perpendicular reflectance measurements, the presented dataset includes angular resolution of the material reflectance. To conduct the angle-dependent spectral reflectance material measurements, a new measurement device based on a 945 nm time-of-flight camera is used, which was calibrated using Lambertian targets with defined reflectance values at 10, 50, and 95%. The spectral reflectance material measurements are taken for an angle range of 0° to 80° with 10° incremental steps and stored in table format. The developed dataset is categorized with a novel material classification, divided into four different levels of detail considering material properties and distinguishing predominantly between mutually exclusive material classes (level 1) and material types (level 2). The dataset is published open access on the open repository Zenodo with record number 7467552 and version 1.0.1 [1]. Currently, the dataset contains 283 measurements and is continuously extended in new versions on Zenodo.

SELECTION OF CITATIONS
SEARCH DETAIL
...