Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Muscle Res Cell Motil ; 32(4-5): 281-90, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22038483

ABSTRACT

Ahnak1 has been implicated in the beta-adrenergic regulation of the cardiac L-type Ca(2+) channel current (I (CaL)) by its binding to the regulatory Cavß(2) subunit. In this study, we addressed the question whether ahnak1/Cavß(2) interactions are essential or redundant for beta-adrenergic stimulation of I (CaL). Three naturally occurring ahnak1 variants (V5075 M, G5242R, and T5796 M) identified by genetic screening of cardiomyopathy patients did essentially not influence the in vitro Cavß(2) interaction as assessed by recombinant proteins. But, we observed a robust increase in Cavß(2) binding by mutating Ala at position 4984 to Pro which creates a PxxP consensus motif in the ahnak1 protein fragment. Surface plasmon resonance measurements revealed that this mutation introduced an additional Cavß(2) binding site. The functionality of A4984P was supported by the specific action of the Pro-containing ahnak1-derived peptide (P4984) in beta-adrenergic regulation of I (CaL). Patch clamp recordings on cardiomyocytes showed that intracellular perfusion of P4984 markedly reduced I (CaL) response to the beta-adrenergic agonist, isoprenaline, while the Ala-containing counterpart failed to affect I (CaL). Interestingly, I (CaL) of ahnak1-deficient cardiomyocytes was not affected by peptide application. Moreover, I (CaL) of ahnak1-deficient cardiomyocytes showed intact beta-adrenergic responsiveness. Similarly isolated ahnak1-deficient mouse hearts responded normally to adrenergic challenge. Our results indicate that ahnak1 is not essential for beta-adrenergic up-regulation of I (CaL) and cardiac contractility in mice. But, tuning ahnak1/Cavß(2) interaction provides a tool for modulating the beta-adrenergic response of I (CaL).


Subject(s)
Calcium Channels, L-Type/metabolism , Membrane Proteins/metabolism , Myocardial Contraction/drug effects , Myocytes, Cardiac/metabolism , Neoplasm Proteins/metabolism , Adrenergic beta-Agonists/metabolism , Adrenergic beta-Agonists/pharmacology , Amino Acid Motifs , Animals , Binding Sites/physiology , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Signaling/physiology , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Hypertrophic/metabolism , Case-Control Studies , Humans , Isoproterenol/metabolism , Isoproterenol/pharmacology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/drug effects , Neoplasm Proteins/genetics , Patch-Clamp Techniques , Polymorphism, Single Nucleotide , Receptors, Adrenergic, beta/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL